English Clearspeak AbsoluteValue rule tests. Locale: en, Style: AbsoluteValue_Auto.

 0 $|x|$ the absolute value of x 1 $|x+1|$ the absolute value of x plus 1 2 $|x|+1$ the absolute value of x, plus 1 3 $|x|+|y|\ge |z|$ the absolute value of x, plus, the absolute value of y, is greater than or equal to, the absolute value of z 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth

English Clearspeak AbsoluteValue rule tests. Locale: en, Style: AbsoluteValue_AbsEnd.

 0 $|x|$ the absolute value of x, end absolute value 1 $|x+1|$ the absolute value of x plus 1, end absolute value 2 $|x|+1$ the absolute value of x, end absolute value, plus 1 3 $|x|+|y|\ge |z|$ the absolute value of x, end absolute value, plus, the absolute value of y, end absolute value, is greater than or equal to, the absolute value of z, end absolute value 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth

English Clearspeak AbsoluteValue rule tests. Locale: en, Style: AbsoluteValue_Cardinality.

 0 $|S|$ the cardinality of S

English Clearspeak AbsoluteValue rule tests. Locale: en, Style: AbsoluteValue_Determinant.

 0 $|M|$ the determinant of M

English Clearspeak CapitalLetters rule tests. Locale: en, Style: Caps_Auto.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine A over a, equals, sine B over b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent A equals, a over b 3 $AB$ A B 4 $aA$ a A 5 $bA$ b A 6 $Ba$ B a 7 $\angle ABC$ angle A B C 8 $m\angle ABC$ the measure of angle A B C 9 $m\angle A$ the measure of angle A

English Clearspeak CapitalLetters rule tests. Locale: en, Style: Caps_SayCaps.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine cap A over a, equals, sine cap B over b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine cap C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent cap A equals, a over b 3 $AB$ cap A, cap B 4 $aA$ a, cap A 5 $bA$ b, cap A 6 $Ba$ cap B, a 7 $\angle ABC$ angle cap A, cap B, cap C 8 $m\angle ABC$ the measure of angle cap A, cap B, cap C 9 $m\angle A$ the measure of angle cap A 10 $\angle A$ angle cap A

English Clearspeak Coverage tests. Locale: en, Style: Verbose.

0$fg\left(x\right)$f of, g of x
1$fgx=f\left(x\right)+g\left(x\right)$f of, g of x, equals f of x, plus g of x
2$\mathrm{sin}\left(x\right)y$sine x y
3$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank
4$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank
5$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank
6$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b
7$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank
8$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank
9$\begin{array}{ccc}a& =& b\\ 1& & 2\end{array}$2 lines, Line 1: a; equals; b. Line 2: 1; blank; 2
10$45°{10}^{\prime }{20}^{″}$45 degrees, 10 minutes, 20 seconds
11$1°{10}^{\prime }{20}^{″}$1 degree, 10 minutes, 20 seconds
12$45°{1}^{\prime }{20}^{″}$45 degrees, 1 minute, 20 seconds
13$45°{10}^{\prime }{1}^{″}$45 degrees, 10 minutes, 1 second
14${1}^{\prime }{20}^{″}$1 foot, 20 inches
15${10}^{\prime }{1}^{″}$10 feet, 1 inch
16$\overline{)12}$enclosed with box 12
17$\overline{)12}$crossed out 12
18$\underset{\overline{)12}}{2}$12 crossed out with 2
19$\underset{2}{\overline{)12}}$12 crossed out with 2
20$\stackrel{2}{\overline{)12}}$12 crossed out with 2
21$\stackrel{\overline{)12}}{2}$12 crossed out with 2
22$\overline{)A}$vertical bar A
23$\overline{)A}$A horizontal bar
24$\overline{)A}$A vertical bar
25$\overline{)A}$A over horizontal bar
26$\sqrt{\sqrt{a}+b}$the square root of, the cube root of a, plus b
27$\sqrt{\sqrt{a}+b}$the square root of, the fourth root of a, plus b
28$\sqrt{\sqrt{a}+b}$the square root of, the square root of a, plus b
29${}_{a}{}^{b}x_{c}^{d}$left sub a left super b x right sub c right super d
30${}_{a}{}^{g}{}_{b}{}^{h}x_{c}^{e}{}_{d}{}^{f}$left sub a b left super g h x right sub c d right super e f
31${}_{a}{}^{b}x^{d}$left sub a left super b x; right super d
32${}_{a}{}^{b}x_{c}r$left sub a left super b x right sub c; r
33$l{}^{b}x_{c}^{d}$l; left super b x right sub c right super d
34${}_{a}x_{c}^{d}$left sub a; x right sub c right super d
35$\left\{x\notin A|B\right\}$the set of all x not in A such that B
36$\left\{B\right\}$the set B
37$\left\{\right\}$the empty set
38${\mathbb{Q}}^{+}$the positive rational numbers
39${ℚ}^{+}$the positive rational numbers
40${\mathbb{Q}}^{-}$the negative rational numbers
41${ℚ}^{-}$the negative rational numbers
42${\mathbb{Q}}^{2}$q-two
43${ℚ}^{2}$q-two
44${\mathbb{N}}^{2}$n-two
45${ℕ}^{2}$n-two
46

a

a
47$\frac{10}{20}$10 over 20
48$\frac{2\mathrm{km}}{\text{b}}$2 kilometers over b
49$1.4\overline{3}$the repeating decimal 1 point 4 followed by repeating digit 3
50${3}^{{2}^{2}}$3 raised to the 2 squared power
51${3}^{{i}^{2}}$3 raised to the i squared power
52${3}^{{\frac{2}{3}}^{2}}$3 raised to the two thirds squared power
53${3}^{{2}^{3}}$3 raised to the 2 cubed power
54${3}^{{i}^{3}}$3 raised to the i cubed power
55${3}^{{\frac{2}{3}}^{3}}$3 raised to the two thirds cubed power
56$a\le b=c$a is less than or equal to b equals c
57${3}^{\mathrm{sin}\left(2+x\right)}$3 raised to the sine of, open paren, 2 plus x, close paren, power
58$\sum ^{I}$sum under I
59$\stackrel{B}{A}$A under B

English Clearspeak Coverage tests. Locale: en, Style: Prime_Angle.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 4 ${1}^{\prime }{20}^{″}$ 1 minute, 20 seconds 5 ${10}^{\prime }{1}^{″}$ 10 minutes, 1 second

English Clearspeak Coverage tests. Locale: en, Style: Prime_Length.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 4 ${1}^{\prime }{20}^{″}$ 1 foot, 20 inches 5 ${10}^{\prime }{1}^{″}$ 10 feet, 1 inch

English Clearspeak Coverage tests. Locale: en, Style: Enclosed_EndEnclose.

 0 $\overline{)12}$ enclosed with box 12 end enclosed 1 $\overline{)12}$ crossed out 12 end crossout 2 $\underset{\overline{)12}}{2}$ crossed out 12 with 2 end crossout 3 $\underset{2}{\overline{)12}}$ crossed out 12 with 2 end crossout 4 $\stackrel{2}{\overline{)12}}$ crossed out 12 with 2 end crossout 5 $\stackrel{\overline{)12}}{2}$ crossed out 12 with 2 end crossout

English Clearspeak Coverage tests. Locale: en, Style: Roots_PosNegSqRoot.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b

English Clearspeak Coverage tests. Locale: en, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b, end root 1 $\sqrt{-\sqrt{a}+b}$ the positive square root of, the negative square root of a, end root, plus b, end root

English Clearspeak Coverage tests. Locale: en, Style: SetMemberSymbol_Belongs.

 0 $\left\{x\notin A|B\right\}$ the set of all x not belonging to A such that B

English Clearspeak Coverage tests. Locale: en, Style: SetMemberSymbol_Element.

 0 $\left\{x\notin A|B\right\}$ the set of all x not an element of A such that B

English Clearspeak Coverage tests. Locale: en, Style: SetMemberSymbol_Member.

 0 $\left\{x\notin A|B\right\}$ the set of all x not a member of A such that B

English Clearspeak Coverage tests. Locale: en, Style: MultiLineLabel_Case.

 0 $\begin{array}{c}f\left(x\right)=-x\text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0

English Clearspeak Coverage tests. Locale: en, Style: MultiLineLabel_Constraint.

 0 $\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 constraints, Constraint 1: f of x, equals negative x; if x is less than 0. Constraint 2: f of x, equals x, if x is greater than or equal to 0

English Clearspeak Coverage tests. Locale: en, Style: VerticalLine_SuchThat.

 0 $3|6$ 3 such that 6

English Clearspeak Coverage tests. Locale: en, Style: Matrix_EndVector.

 0 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant

English Clearspeak Coverage tests. Locale: en, Style: Paren_Speak.

 0 $\left(f+g\right)\left(2+x\right)$ open paren, f plus g, close paren, of, open paren, 2 plus x, close paren

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: Verbose.

 0 $\left\{z\in A:z\right\}$ the set of all z in A such that z 1 $\left\{z∊A:z\right\}$ the set of all z in A such that z 2 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z 3 $\left\{A\ni z:z\right\}$ the set of all A contains as member z such that z 4 $\left\{A∍z:z\right\}$ the set of all A contains as member z such that z 5 $\left\{A\not\ni z:z\right\}$ the set of all A does not contain as member z such that z 6 $z\in A$ z is a member of A 7 $z∊A$ z is a member of A 8 $z\notin A$ z is not a member of A 9 $A\ni z$ A contains as member z 10 $A∍z$ A contains as member z 11 $A\not\ni z$ A does not contain as member z 12 $\sum _{z\in A}$ sum over z is a member of A 13 $\sum _{z∊A}$ sum over z is a member of A 14 $\sum _{z\notin A}$ sum over z is not a member of A 15 $\sum _{A\ni z}$ sum over A contains as member z 16 $\sum _{A∍z}$ sum over A contains as member z 17 $\sum _{A\not\ni z}$ sum over A does not contain as member z

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_Auto.

 0 $z\in A$ z is a member of A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z 2 $\sum _{z\in A}$ sum over z is a member of A 3 $z\notin A$ z is not a member of A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z 5 $\sum _{z\notin A}$ sum over z is not a member of A

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_Member.

 0 $z\in A$ z is a member of A 1 $\left\{z\in A:z\right\}$ the set of all z member of A such that z 2 $\sum _{z\in A}$ sum over z is a member of A 3 $z\notin A$ z is not a member of A 4 $\left\{z\notin A:z\right\}$ the set of all z not a member of A such that z 5 $\sum _{z\notin A}$ sum over z is not a member of A

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_Element.

 0 $z\in A$ z is an element of A 1 $\left\{z\in A:z\right\}$ the set of all z element of A such that z 2 $\sum _{z\in A}$ sum over z is an element of A 3 $z\notin A$ z is not an element of A 4 $\left\{z\notin A:z\right\}$ the set of all z not an element of A such that z 5 $\sum _{z\notin A}$ sum over z is not an element of A

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_In.

 0 $z\in A$ z is in A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z 2 $\sum _{z\in A}$ sum over z is in A 3 $z\notin A$ z is not in A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z 5 $\sum _{z\notin A}$ sum over z is not in A

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_Belongs.

 0 $z\in A$ z belongs to A 1 $\left\{z\in A:z\right\}$ the set of all z belonging to A such that z 2 $\sum _{z\in A}$ sum over z belongs to A 3 $z\notin A$ z does not belong to A 4 $\left\{z\notin A:z\right\}$ the set of all z not belonging to A such that z 5 $\sum _{z\notin A}$ sum over z does not belong to A

English Clearspeak Coverage for Elements symbol tests. Locale: en, Style: SetMemberSymbol_Belongs:Caps_SayCaps:Fraction_GeneralEndFrac.

 0 $\left\{a\in A|\frac{1}{a}\right\}$ the set of all a belonging to, cap A such that, the fraction with numerator 1, and denominator a, end fraction

English Clearspeak Exponents rule tests. Locale: en, Style: Exponent_Auto.

 0 ${3}^{2}$ 3 squared 1 ${3}^{3}$ 3 cubed 2 ${3}^{5}$ 3 to the fifth power 3 ${3}^{1}$ 3 to the first power 4 ${b}^{1}$ b to the first power 5 ${3}^{5.0}$ 3 raised to the 5.0 power 6 ${3}^{0}$ 3 to the 0 power 7 ${4}^{11}$ 4 to the 11th power 8 ${3}^{-2}$ 3 to the negative 2 power 9 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 10 ${4}^{x}$ 4 to the x-th power 11 ${3}^{y+2}$ 3 raised to the y plus 2 power 12 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power 13 ${p}_{1}^{2}$ p sub 1, squared 14 ${p}_{1}^{3}$ p sub 1, cubed 15 ${p}_{1}^{4}$ p sub 1, to the fourth power 16 ${p}_{1}^{10}$ p sub 1, to the tenth power 17 ${p}_{1}^{x+1}$ p sub 1, raised to the x plus 1 power 18 ${p}_{{x}_{1}}^{2}$ p sub, x sub 1, squared 19 ${p}_{{x}_{1}}^{3}$ p sub, x sub 1, cubed 20 ${p}_{{x}_{1}}^{4}$ p sub, x sub 1, to the fourth power 21 ${p}_{{x}_{1}}^{10}$ p sub, x sub 1, to the tenth power 22 ${p}_{{x}_{1}}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power 23 ${3}^{{2}^{2}}$ 3 raised to the 2 squared power 24 ${3}^{2{x}^{2}}$ 3 raised to the 2 x squared power 25 ${5}^{{2}^{3}}$ 5 raised to the 2 cubed power 26 ${5}^{2{x}^{3}}$ 5 raised to the 2 x cubed power 27 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 squared plus 1, end exponent 28 ${3}^{{2}^{2}}+1$ 3 raised to the 2 squared power, plus 1 29 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x squared plus 3 x cubed, end exponent 30 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 31 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 32 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 33 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 34 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 35 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 36 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 37 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 38 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent 39 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 40 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 41 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 42 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponent 44 ${2}^{n}$ 2 to the n-th power 45 ${2}^{m}$ 2 to the m-th power 46 ${2}^{i}$ 2 to the i-th power 47 ${2}^{j}$ 2 to the j-th power 48 ${2}^{a}$ 2 to the a-th power

English Clearspeak Exponents rule tests. Locale: en, Style: Exponent_Ordinal.

 0 ${3}^{2}$ 3 to the second 1 ${3}^{3}$ 3 to the third 2 ${3}^{0}$ 3 to the zero 3 ${3}^{1}$ 3 to the first 4 ${3}^{5}$ 3 to the fifth 5 ${4}^{3.0}$ 4 raised to the 3.0 power 6 ${4}^{11}$ 4 to the eleventh 7 ${3}^{-2}$ 3 to the negative 2 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 9 ${4}^{x}$ 4 to the x-th 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power 12 ${p}_{1}{}^{2}$ p sub 1, to the second 13 ${p}_{1}{}^{3}$ p sub 1, to the third 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second, end exponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third, end exponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third, end exponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second, plus 1, end exponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second, end exponent, plus 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second, plus 3 x to the third, end exponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth, end exponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth, plus 2, end exponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth, end exponent, plus 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth, end exponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth, end exponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth, plus 1, end exponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth, end exponent, plus 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second, end exponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponent

English Clearspeak Exponents rule tests. Locale: en, Style: Exponent_OrdinalPower.

 0 ${3}^{2}$ 3 to the second power 1 ${3}^{3}$ 3 to the third power 2 ${3}^{0}$ 3 to the zero power 3 ${3}^{1}$ 3 to the first power 4 ${3}^{5}$ 3 to the fifth power 5 ${3}^{5.0}$ 3 raised to the 5.0 power 6 ${4}^{11}$ 4 to the eleventh power 7 ${3}^{-2}$ 3 to the negative 2 power 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 9 ${4}^{x}$ 4 to the x-th power 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power 12 ${p}_{1}{}^{2}$ p sub 1, to the second power 13 ${p}_{1}{}^{3}$ p sub 1, to the third power 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth power 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth power 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second power 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third power 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth power 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth power 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second power, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second power, end exponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third power, end exponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third power, end exponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second power, plus 1, end exponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second power, end exponent, plus 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second power, end exponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponent

English Clearspeak Exponents rule tests. Locale: en, Style: Exponent_AfterPower.

 0 ${3}^{2}$ 3 raised to the power 2 1 ${3}^{3}$ 3 raised to the power 3 2 ${3}^{1}$ 3 raised to the power 1 3 ${3}^{0}$ 3 raised to the power 0 4 ${3}^{5}$ 3 raised to the power 5 5 ${3}^{5.0}$ 3 raised to the power 5.0 6 ${4}^{11}$ 4 raised to the power 11 7 ${3}^{-2}$ 3 raised to the power negative 2 8 ${3}^{-2.0}$ 3 raised to the power negative 2.0 9 ${4}^{x}$ 4 raised to the power x 10 ${3}^{y+2}$ 3 raised to the power y plus 2 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8 12 ${p}_{1}{}^{2}$ p sub 1, raised to the power 2 13 ${p}_{1}{}^{3}$ p sub 1, raised to the power 3 14 ${p}_{1}{}^{4}$ p sub 1, raised to the power 4 15 ${p}_{1}{}^{10}$ p sub 1, raised to the power 10 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the power x plus 1 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, raised to the power 2 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, raised to the power 3 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, raised to the power 4 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, raised to the power 10 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the power y plus 1 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 24 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 25 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 26 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 raised to the power 3, end exponent 27 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x raised to the power 3, end exponent 28 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 raised to the power 2, plus 1, end exponent 29 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 raised to the power 2, end exponent, plus 1 30 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent 31 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 raised to the power 4, end exponent 32 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 raised to the power 4, plus 2, end exponent 33 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 raised to the power 4, end exponent, plus 2 34 ${2}^{{x}^{4}}$ 2 raised to the exponent, x raised to the power 4, end exponent 35 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the power x plus 3, end exponent 36 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 raised to the power 10, end exponent 37 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 raised to the power 10, plus 1, end exponent 38 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 raised to the power 10, end exponent, plus 1 39 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent 40 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent 41 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent 42 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent 43 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 2 44 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x raised to the power 2, end exponent 45 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponent

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_Auto.

 0 $\frac{1}{2}$ one half 1 $\frac{12}{32}$ 12 over 32 2 $\frac{x}{y}$ x over y 3 $\frac{2x}{3y}$ 2 x over 3 y 4 $\frac{xy}{cd}$ x y over c d 5 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third 6 $\frac{-x}{y}$ negative x over y 7 $\frac{-2x}{3y}$ negative 2 x over 3 y 8 $\frac{xy}{-cd}$ x y over negative c d 9 $\frac{\frac{1}{2}}{-\frac{1}{3}}$ one half over negative one third 10 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 11 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 12 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y 13 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds 14 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon 15 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 16 $\frac{2\text{}\text{miles}}{3\text{}\text{gallons}}$ 2 miles over 3 gallons 17 $\frac{\text{rise}}{\text{run}}$ rise over run 18 $\frac{\text{successful outcomes}}{\text{total outcomes}}$ successful outcomes over total outcomes 19 $\frac{6\text{ways of rolling a 7}}{36\text{ways of rolling the pair of dice}}$ 6 ways of rolling a 7 over 36 ways of rolling the pair of dice 20 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third 21 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third 22 $\frac{\frac{1}{2}}{3}$ one half over 3 23 $\frac{1}{\frac{2}{3}}$ 1 over two thirds 24 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51 25 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51 26 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2 27 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x 28 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half 29 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds 30 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2 31 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1 32 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16 33 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x 34 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3 35 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1 36 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot 37 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot 38 $\frac{f\left(x\right)}{g\left(x\right)}$ f of x, over g of x 39 $\frac{f\left(x\right)+g\left(x\right)}{g\left(x\right)}$ the fraction with numerator f of x, plus g of x, and denominator g of x 40 $\frac{f\left(x+1\right)}{g\left(x\right)}$ the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of x 41 $\frac{f\left(x\right)}{2}$ f of x, over 2 42 $\frac{2}{f\left(x\right)}$ 2 over f of x 43 $\frac{2}{g\left(x\right)+g\left(x+1\right)}$ the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close paren 44 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x 45 $\frac{\mathrm{sin}x+\mathrm{cos}x}{\mathrm{cos}x}$ the fraction with numerator sine x plus cosine x, and denominator cosine x 46 $\frac{\mathrm{sin}2x}{\mathrm{cos}3x}$ sine 2 x over cosine 3 x 47 $\frac{\mathrm{sin}\left(x+y\right)}{\mathrm{cos}\left(x+y\right)}$ the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close paren 48 $\frac{f\left(2x\right)}{g\left(3x\right)}$ f of 2 x, over g of 3 x 49 $\frac{\mathrm{log}x}{\mathrm{log}y}$ log x over log y 50 $\frac{\mathrm{log}2x}{\mathrm{log}3y}$ log 2 x over log 3 y 51 $\frac{{\mathrm{log}}_{10}x}{{\mathrm{log}}_{5}y}$ the log base 10 of, x, over, the log base 5 of, y 52 $\frac{{\mathrm{log}}_{10}2x}{{\mathrm{log}}_{5}3y}$ the log base 10 of, 2 x, over, the log base 5 of, 3 y 53 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}y}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log y 54 $\frac{{f}_{1}\left(x\right)}{{g}_{1}\left(x\right)}$ f sub 1, of x, over, g sub 1, of x

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_Over.

 0 $\frac{1}{2}$ 1 over 2 1 $\frac{12}{32}$ 12 over 32 2 $\frac{2+3}{13}$ 2 plus 3 over 13 3 $\frac{x+y}{2}$ x plus y over 2 4 $\frac{x+y}{x-y}$ x plus y over x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, plus, 2 over 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_OverEndFrac.

 0 $\frac{1}{2}$ 1 over 2, end fraction 1 $\frac{12}{32}$ 12 over 32, end fraction 2 $\frac{2+3}{13}$ 2 plus 3 over 13, end fraction 3 $\frac{x+y}{2}$ x plus y over 2, end fraction 4 $\frac{x+y}{x-y}$ x plus y over x minus y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, end fraction, plus, 2 over 3, end fraction 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons, end fraction 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons, end fraction

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_GeneralEndFrac.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2, end fraction 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32, end fraction 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus, the fraction with numerator 2, and denominator 3, end fraction 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon, end fraction

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_General.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus, the fraction with numerator 2, and denominator 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction with numerator 2 miles, and denominator 3 gallons

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_FracOver.

 0 $\frac{1}{2}$ the fraction 1 over 2 1 $\frac{12}{32}$ the fraction 12 over 32 2 $\frac{2+3}{13}$ the fraction 2 plus 3 over 13 3 $\frac{x+y}{2}$ the fraction x plus y over 2 4 $\frac{x+y}{x-y}$ the fraction x plus y over x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction x plus y over x minus y, plus, the fraction 2 over 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction 2 miles over 3 gallons

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_Per.

 0 $\frac{1}{2}$ 1 per 2 1 $\frac{12}{32}$ 12 per 32 2 $\frac{2+3}{13}$ 2 plus 3 per 13 3 $\frac{x+y}{2}$ x plus y per 2 4 $\frac{x+y}{x-y}$ x plus y per x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y per x minus y, plus, 2 per 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles per gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles per 3 gallons

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_Ordinal.

 0 $\frac{1}{2}$ one half 1 $\frac{12}{32}$ twelve thirty seconds 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons

English Clearspeak Fractions rule tests. Locale: en, Style: Fraction_EndFrac.

 0 $\frac{1}{2}$ one half 1 $\frac{12}{32}$ 12 over 32, end fraction 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirds 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 8 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third 9 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third, end fraction 10 $\frac{\frac{1}{2}}{3}$ one half over 3, end fraction 11 $\frac{1}{\frac{2}{3}}$ 1 over two thirds, end fraction 12 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction 13 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction 14 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2, end fraction 15 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x, end fraction 16 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half, end fraction 17 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fraction 18 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fraction 19 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fraction 20 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fraction 21 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction 22 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction 23 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction 24 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction 25 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fraction

English Clearspeak Functions rule tests. Locale: en, Style: Functions_Auto.

 0 $f\left(x\right)$ f of x 1 $g\left(x\right)$ g of x 2 $h\left(x\right)$ h of x 3 $f\left(2x\right)$ f of 2 x 4 $g\left(-2x\right)$ g of negative 2 x 5 $h\left(\frac{1}{2}\right)$ h of one half 6 $f\left(x+1\right)=f\left(x\right)+1$ f of, open paren, x plus 1, close paren, equals f of x, plus 1 7 $g\left(2x+1\right)$ g of, open paren, 2 x, plus 1, close paren 8 $g\left({x}^{2}\right)$ g of, open paren, x squared, close paren 9 ${f}^{-1}\left(x\right)$ f inverse of x 10 ${g}^{-1}\left(x\right)$ g inverse of x 11 ${h}^{-1}\left(x\right)$ h inverse of x 12 ${f}^{-1}\left(2x\right)$ f inverse of 2 x 13 ${g}^{-1}\left(-2x\right)$ g inverse of negative 2 x 14 ${f}^{-1}\left(3x-1\right)$ f inverse of, open paren, 3 x, minus 1, close paren 15 ${g}^{-1}\left({x}^{2}\right)$ g inverse of, open paren, x squared, close paren 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of one half 17 ${f}^{-1}\left(f\left(x\right)\right)$ f inverse of, f of x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g inverse of, g of x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h inverse of, h of x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f inverse of, f of 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g inverse of, g of negative 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, h of one half 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close paren 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g inverse of, open paren, g of, open paren, x squared, close paren, close paren 26 $f\left({f}^{-1}\left(x\right)\right)$ f of, f inverse of x 27 $g\left({g}^{-1}\left(x\right)\right)$ g of, g inverse of x 28 $h\left({h}^{-1}\left(x\right)\right)$ h of, h inverse of x 29 $f\left({f}^{-1}\left(2x\right)\right)$ f of, f inverse of 2 x 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g of, g inverse of negative 2 x 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close paren 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g of, g inverse of, open paren, x squared, close paren 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of one half 34 $f\left(g\left(x\right)\right)$ f of, g of x 35 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren 36 $h\left(g\left(x\right)\right)$ h of, g of x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, of x, equals f of x, plus g of x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close paren 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, of x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, of, open paren, 2 x, plus 5, close paren 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, of x, equals, f of x, over g of x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close paren 44 $\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, equals f of, g of x 45 $2f\left(x\right)$ 2 f of x 46 $cf\left(x\right)$ c f of x 47 ${f}^{2}\left(x\right)$ f squared of x 48 ${f}^{2}\left(2x+1\right)$ f squared of, open paren, 2 x, plus 1, close paren 49 ${f}^{3}\left(x\right)$ f cubed of x 50 ${f}^{3}\left(2x+1\right)$ f cubed of, open paren, 2 x, plus 1, close paren 51 ${f}^{4}\left(x\right)$ the fourth power of, f of x 52 ${f}^{4}\left(2x+1\right)$ the fourth power of, f of, open paren, 2 x, plus 1, close paren 53 ${f}^{5}\left(x\right)$ the fifth power of, f of x 54 ${f}^{5}\left(2x+1\right)$ the fifth power of, f of, open paren, 2 x, plus 1, close paren 55 ${f}^{n}\left(x\right)$ the n-th power of, f of x 56 ${f}^{n}\left(2x+1\right)$ the n-th power of, f of, open paren, 2 x, plus 1, close paren 57 ${g}^{2}\left(x\right)$ g squared of x 58 ${g}^{2}\left(2x+1\right)$ g squared of, open paren, 2 x, plus 1, close paren 59 ${h}^{3}\left(x\right)$ h cubed of x 60 ${h}^{3}\left(2x+1\right)$ h cubed of, open paren, 2 x, plus 1, close paren 61 ${g}^{4}\left(x\right)$ the fourth power of, g of x 62 ${g}^{4}\left(2x+1\right)$ the fourth power of, g of, open paren, 2 x, plus 1, close paren 63 ${h}^{5}\left(x\right)$ the fifth power of, h of x 64 ${h}^{5}\left(2x+1\right)$ the fifth power of, h of, open paren, 2 x, plus 1, close paren 65 ${g}^{n}\left(x\right)$ the n-th power of, g of x 66 ${g}^{n}\left(2x+1\right)$ the n-th power of, g of, open paren, 2 x, plus 1, close paren 67 ${f}_{1}\left(x\right)$ f sub 1, of x 68 ${g}_{2}\left({x}^{3}\right)$ g sub 2, of, open paren, x cubed, close paren 69 ${h}_{n}\left(3x-2\right)$ h sub n, of, open paren, 3 x, minus 2, close paren 70 ${f}_{1}^{-1}\left(x\right)$ f sub 1, inverse of x 71 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, inverse of, open paren, 2 x, plus 1, close paren 72 ${h}_{n}^{-1}\left(x\right)$ h sub n, inverse of x 73 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, inverse of, g sub 2, of x 74 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, of, g sub 2, inverse of x 75 $f\left(x,y\right)$ f of, open paren, x comma y, close paren 76 $f\left(x,y,z\right)$ f of, open paren, x comma y comma z, close paren 77 $f\left(x+1,2y\right)$ f of, open paren, x plus 1, comma, 2 y, close paren 78 $f\left(2x,x+1,{x}^{2}\right)$ f of, open paren, 2 x, comma, x plus 1, comma, x squared, close paren

English Clearspeak Functions rule tests. Locale: en, Style: Fraction_Over.

 0 $h\left(\frac{1}{2}\right)$ h of, open paren, 1 over 2, close paren 1 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of, open paren, 1 over 2, close paren 2 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, open paren, h of, open paren, 1 over 2, close paren, close paren

English Clearspeak Functions rule tests. Locale: en, Style: Fraction_FracOver.

 0 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of, open paren, the fraction 1 over 2, close paren

English Clearspeak Functions rule tests. Locale: en, Style: Functions_None.

 0 $f\left(x\right)$ f times x 1 $g\left(x\right)$ g times x 2 $h\left(x\right)$ h times x 3 $f\left(2x\right)$ f times 2 x 4 $g\left(-2x\right)$ g times negative 2 x 5 $h\left(\frac{1}{2}\right)$ h times one half 6 $f\left(x+1\right)=f\left(x\right)+1$ f times, open paren, x plus 1, close paren, equals, f times x, plus 1 7 $g\left(2x+1\right)$ g times, open paren, 2 x, plus 1, close paren 8 $g\left({x}^{2}\right)$ g times, open paren, x squared, close paren 9 ${f}^{-1}\left(x\right)$ f to the negative 1 power, times x 10 ${g}^{-1}\left(x\right)$ g to the negative 1 power, times x 11 ${h}^{-1}\left(x\right)$ h to the negative 1 power, times x 12 ${f}^{-1}\left(2x\right)$ f to the negative 1 power, times 2 x 13 ${g}^{-1}\left(-2x\right)$ g to the negative 1 power, times negative 2 x 14 ${f}^{-1}\left(3x-1\right)$ f to the negative 1 power, times, open paren, 3 x, minus 1, close paren 15 ${g}^{-1}\left({x}^{2}\right)$ g to the negative 1 power, times, open paren, x squared, close paren 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h to the negative 1 power, times one half 17 ${f}^{-1}\left(f\left(x\right)\right)$ f to the negative 1 power, times, f times x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g to the negative 1 power, times, g times x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h to the negative 1 power, times, h times x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f to the negative 1 power, times, f times 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g to the negative 1 power, times, g times negative 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h to the negative 1 power, times, h times one half 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close paren 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close paren 26 $f\left({f}^{-1}\left(x\right)\right)$ f times, open paren, f to the negative 1 power, times x, close paren 27 $g\left({g}^{-1}\left(x\right)\right)$ g times, open paren, g to the negative 1 power, times x, close paren 28 $h\left({h}^{-1}\left(x\right)\right)$ h times, open paren, h to the negative 1 power, times x, close paren 29 $f\left({f}^{-1}\left(2x\right)\right)$ f times, open paren, f to the negative 1 power, times 2 x, close paren 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g times, open paren, g to the negative 1 power, times negative 2 x, close paren 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close paren 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close paren 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h times, open paren, h to the negative 1 power, times one half, close paren 34 $f\left(g\left(x\right)\right)$ f times, g times x 35 $f\left(g\left(x+1\right)\right)$ f times, open paren, g times, open paren, x plus 1, close paren, close paren 36 $h\left(g\left(x\right)\right)$ h times, g times x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, times x, equals, f times x, plus, g times x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close paren 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, times x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, times, open paren, 2 x, plus 5, close paren 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close paren 44 $2f\left(x\right)$ 2, f times x 45 $cf\left(x\right)$ c, f times x 46 ${f}^{2}\left(x\right)$ f squared times x 47 ${f}^{2}\left(2x+1\right)$ f squared times, open paren, 2 x, plus 1, close paren 48 ${f}^{3}\left(x\right)$ f cubed times x 49 ${f}^{3}\left(2x+1\right)$ f cubed times, open paren, 2 x, plus 1, close paren 50 ${f}^{4}\left(x\right)$ f to the fourth power, times x 51 ${f}^{4}\left(2x+1\right)$ f to the fourth power, times, open paren, 2 x, plus 1, close paren 52 ${f}^{5}\left(x\right)$ f to the fifth power, times x 53 ${f}^{5}\left(2x+1\right)$ f to the fifth power, times, open paren, 2 x, plus 1, close paren 54 ${f}^{n}\left(x\right)$ f to the n-th power, times x 55 ${f}^{n}\left(2x+1\right)$ f to the n-th power, times, open paren, 2 x, plus 1, close paren 56 ${g}^{2}\left(x\right)$ g squared times x 57 ${g}^{2}\left(2x+1\right)$ g squared times, open paren, 2 x, plus 1, close paren 58 ${h}^{3}\left(x\right)$ h cubed times x 59 ${h}^{3}\left(2x+1\right)$ h cubed times, open paren, 2 x, plus 1, close paren 60 ${g}^{4}\left(x\right)$ g to the fourth power, times x 61 ${g}^{4}\left(2x+1\right)$ g to the fourth power, times, open paren, 2 x, plus 1, close paren 62 ${h}^{5}\left(x\right)$ h to the fifth power, times x 63 ${h}^{5}\left(2x+1\right)$ h to the fifth power, times, open paren, 2 x, plus 1, close paren 64 ${g}^{n}\left(x\right)$ g to the n-th power, times x 65 ${g}^{n}\left(2x+1\right)$ g to the n-th power, times, open paren, 2 x, plus 1, close paren 66 ${f}_{1}\left(x\right)$ f sub 1, times x 67 ${g}_{2}\left({x}^{3}\right)$ g sub 2, times, open paren, x cubed, close paren 68 ${h}_{n}\left(3x-2\right)$ h sub n, times, open paren, 3 x, minus 2, close paren 69 ${f}_{1}^{-1}\left(x\right)$ f sub 1, to the negative 1 power, times x 70 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close paren 71 ${h}_{n}^{-1}\left(x\right)$ h sub n, to the negative 1 power, times x 72 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close paren 73 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close paren 74 $f\left(x,y\right)$ f times, open paren, x comma y, close paren 75 $f\left(x,y,z\right)$ f times, open paren, x comma y comma z, close paren 76 $f\left(x+1,2y\right)$ f times, open paren, x plus 1, comma, 2 y, close paren 77 $f\left(2x,x+1,{x}^{2}\right)$ f times, open paren, 2 x, comma, x plus 1, comma, x squared, close paren

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_Auto.

 0 $2\left(3\right)$ 2 times 3 1 $2\left[3\right]$ 2 times 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 5 $\left(3\right)\left(2\right)$ 3 times 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 16 $xy$ x y 17 ${x}^{2}{y}^{3}$ x squared, y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 21 $2\sqrt{3}$ 2 the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close paren 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 31 $2|x|$ 2 times, the absolute value of x 32 $|x||y|$ the absolute value of x, times, the absolute value of y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1 35 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren 36 $a\left(0\right)=0\left(a\right)=0$ a of 0, equals 0 times a equals 0 37 $a\left(-1\right)=-a$ a of negative 1, equals negative a 38 $B\left(2,6\right)$ B of, open paren, 2 comma 6, close paren 39 $p\left(w\right)$ p of w 40 $x\left(t\right)=2t+4$ x of t, equals 2 t, plus 4 41 $k\left(x\right)=\left(x+3\right)\left(x-5\right)$ k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close paren 42 $T\left(t\right)={T}_{s}+\left({T}_{0}-{T}_{s}\right){e}^{-kt}$ T of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, power 43 $V=\mathcal{l}w\left(8\right)$ V equals script l, w of 8

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_Auto:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren 1 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals, h times, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren 2 $a\left(0\right)=0\left(a\right)=0$ a times 0, equals 0 times a equals 0 3 $a\left(-1\right)=-a$ a times negative 1, equals negative a 4 $B\left(2,6\right)$ B times, open paren, 2 comma 6, close paren

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_Auto:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_Auto:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_MoreImpliedTimes.

 0 $2\left(3\right)$ 2 times 3 1 $2\left[3\right]$ 2 times 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 5 $\left(3\right)\left(2\right)$ 3 times 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 16 $xy$ x times y 17 ${x}^{2}{y}^{3}$ x squared times y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, times x raised to the y plus 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, times the square root of b, equals the square root of a times b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, times the square root of 10, equals the square root of 30 21 $2\sqrt{3}$ 2 times the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 times the square root of 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x, times cosine y plus cosine x, times sine y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close paren 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x times y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals log x, times log y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 31 $2|x|$ 2 times, the absolute value of x 32 $|x||y|$ the absolute value of x, times, the absolute value of y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_MoreImpliedTimesAnd:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_MoreImpliedTimes:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_MoreImpliedTimes:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_None.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 16 $xy$ x y 17 ${x}^{2}{y}^{3}$ x squared y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 21 $2\sqrt{3}$ 2 the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 23 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y 24 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y 25 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y 26 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 27 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 28 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 29 $2|x|$ 2, the absolute value of x 30 $|x||y|$ the absolute value of x, the absolute value of y 31 $|x+1||y-1|$ the absolute value of x plus 1, the absolute value of y minus 1 32 $|x+1||y|-1$ the absolute value of x plus 1, the absolute value of y, minus 1 33 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren 34 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_None:Functions_Auto.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_None:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 3 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket

English Clearspeak ImpliedTimes rule tests. Locale: en, Style: ImpliedTimes_None:Paren_Silent.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren 13 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power 14 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 15 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 16 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 17 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket

English Clearspeak Logarithms rule tests. Locale: en, Style: Log_Auto.

 0 $\mathrm{log}x$ log x 1 ${\mathrm{log}}_{10}x$ the log base 10 of, x 2 ${\mathrm{log}}_{b}ax={\mathrm{log}}_{b}a+{\mathrm{log}}_{b}x$ the log base b of, a x, equals, the log base b of, a, plus, the log base b of, x 3 ${\mathrm{log}}_{b}\frac{S}{T}={\mathrm{log}}_{b}S-{\mathrm{log}}_{b}T$ the log base b of, S over T, equals, the log base b of, S, minus, the log base b of, T 4 ${\mathrm{log}}_{b}\left({x}^{k}\right)=k{\mathrm{log}}_{b}x$ the log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, x 5 ${10}^{{\mathrm{log}}_{10}x}=x$ 10 raised to the log base 10 of, x, power, equals x 6 ${\mathrm{log}}_{10}{10}^{x}=x$ the log base 10 of, 10 to the x-th power, equals x 7 ${10}^{{\mathrm{log}}_{10}5}=5$ 10 raised to the log base 10 of, 5, power, equals 5 8 ${\mathrm{log}}_{10}{10}^{3}=3$ the log base 10 of, 10 cubed, equals 3 9 ${\mathrm{log}}_{a}x=\frac{{\mathrm{log}}_{b}x}{{\mathrm{log}}_{b}a}$ the log base a of, x, equals, the log base b of, x, over, the log base b of, a 10 $\frac{{\mathrm{log}}_{10}18}{{\mathrm{log}}_{10}3}={\mathrm{log}}_{3}18$ the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18 11 $\frac{\mathrm{log}x}{\mathrm{log}a}$ log x over log a 12 $\mathrm{log}\left(x+1\right)$ the log of, open paren, x plus 1, close paren 13 $\mathrm{log}{\left(x+1\right)}^{2}$ the log of, open paren, x plus 1, close paren, squared 14 $\mathrm{log}\left(xy\right)$ log x y 15 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}\left(x+2\right)}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close paren 16 $\frac{{\mathrm{log}}_{6}\left(x+1\right)}{{\mathrm{log}}_{6}\left(x+2\right)}$ the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close paren 17 $\frac{\mathrm{log}40+\mathrm{log}60}{\mathrm{log}5}$ the fraction with numerator log 40 plus log 60, and denominator log 5 18 $\frac{{\mathrm{log}}_{3}40+{\mathrm{log}}_{3}60}{{\mathrm{log}}_{3}5}$ the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5 19 $\mathrm{log}\left({3}^{4}{12}^{9}\right)=4\mathrm{log}3+9\mathrm{log}12$ the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12 20 $\mathrm{log}\left(\frac{x}{y}\right)$ the log of, open paren, x over y, close paren 21 $\mathrm{log}\left(\frac{{3}^{4}}{{8}^{10}}\right)=4\mathrm{log}3-10\mathrm{log}8$ the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8 22 ${10}^{\mathrm{log}x}$ 10 raised to the log x power 23 $\mathrm{ln}x$ l n x 24 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close paren 25 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x 26 ${e}^{\mathrm{ln}x}=x$ e raised to the l n x power, equals x 27 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x 28 ${e}^{\mathrm{ln}4}=4$ e raised to the l n 4 power, equals 4 29 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ l n 40, over l n 5, equals, the log base 5 of, 40 30 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator l n 40, plus l n 60, and denominator l n 5

English Clearspeak Logarithms rule tests. Locale: en, Style: Log_LnAsNaturalLog.

 0 $\mathrm{ln}x$ natural log x 1 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ natural log x, minus, the natural log of, open paren, x minus 1, close paren, equals, the natural log of, open paren, the fraction with numerator x, and denominator x minus 1, close paren 2 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x 3 ${e}^{\mathrm{ln}x}=x$ e raised to the natural log x power, equals x 4 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x 5 ${e}^{\mathrm{ln}4}=4$ e raised to the natural log 4 power, equals 4 6 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ natural log 40, over natural log 5, equals, the log base 5 of, 40 7 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator natural log 40, plus natural log 60, and denominator natural log 5

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_Auto.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 8 $\begin{array}{c}\left(3\right)\end{array}$ the 1 by 1 matrix with entry 3 9 $\left(\begin{array}{c}3\end{array}\right)$ the 1 by 1 matrix with entry 3 10 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 11 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 12 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x 13 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 14 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 15 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 16 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 17 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 18 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 19 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 20 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 21 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 22 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth 23 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 24 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 25 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 26 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 27 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 28 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 29 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 30 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 31 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 32 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 33 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 34 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 35 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 36 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 37 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 38 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 39 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth 40 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_SpeakColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 8 $\left(\begin{array}{cccc}1& 2& 3& 4\end{array}\right)$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 9 $\left[\begin{array}{cccc}1& 2& 3& 4\end{array}\right]$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 10 $\left(\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right)$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 11 $\left[\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right]$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 12 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 13 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 14 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x 15 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 16 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 17 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 18 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 19 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 20 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 21 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 22 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 23 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds 24 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth 25 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2 26 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 27 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 28 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 29 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 30 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 31 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 32 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 33 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 34 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 35 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 36 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x 37 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 38 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 39 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds 40 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds 41 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth 42 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_SilentColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. x plus 1, x minus 1 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. 3, 6, 1, 2 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. x plus 1, 2 x 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. 3, 6, 1, 2 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_EndMatrix.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3. end matrix 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3. end matrix 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5. end matrix 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5. end matrix 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrix 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrix 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinant 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinant 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinant 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_Vector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. times the 2 by 1 column vector. 3, 2 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. times the 3 by 1 column vector. 1, 2, 7

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_EndVector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3. end vector 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3. end vector 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5. end vector 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5. end vector 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1. end vector 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vector 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x. end vector 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. end vector times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. end vector times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix times the 2 by 1 column vector. 3, 2. end vector 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix times the 3 by 1 column vector. 1, 2, 7. end vector

English Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: en, Style: Matrix_Combinatoric.

 0 $\left(\begin{array}{c}n\\ r\end{array}\right)$ n choose r 1 $\left(\begin{array}{c}10\\ 7\end{array}\right)$ 10 choose 7 2 $\left(\begin{array}{c}15\\ 0\end{array}\right)$ 15 choose 0 3 $\left(\begin{array}{c}8\\ 3\end{array}\right)$ 8 choose 3

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ 3 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ 3 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 9 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 30 10 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x 11 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank 12 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ 4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x 13 $f\left(x\right)=\left\{\begin{array}{c}-x\text{if}x<0\\ x\text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 14 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Case.

 0 $f\left(x\right)=\left\{\begin{array}{c}-x\text{if}x<0\\ x\text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 1 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 2 $\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x& \text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Equation.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 equations, Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y; equals; 7. Equation 2: 2 x, plus 3 y; equals; 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLinePausesBetweenColumns_Auto:MultiLineOverview_Auto:MultiLineLabel_Line.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Line.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Row.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 rows, Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y; equals; 7. Row 2: 2 x, plus 3 y; equals; 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Step.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 steps, Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Constraint.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 constraints, Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_None.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, x is greater than or equal to 0. y is greater than or equal to 0. 3 x, minus 5 y, is less than or equal to 30 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, 3 x; plus; 8; equals; 5 x; blank; blank. blank; blank; 8; equals; 5 x; minus; 3 x. blank; blank; 8; equals; 2 x; blank; blank. blank; blank; 4; equals; x; blank; blank 2 $f\left(x\right)=\left\{\begin{array}{c}-x\text{if}x<0\\ x\text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, negative x if x is less than 0. x if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x. plus. y. equals. 7. Line 2: 2 x. plus. 3 y. equals. 17 3 $\begin{array}{cc}\text{Equation 1:}& \text{}\text{}x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon. x plus y equals 7. Line 2: Equation 2 colon. 2 x, plus 3 y, equals 17 4 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon. x plus y. equals. 7. Line 2: Equation 2 colon. 2 x, plus 3 y. equals. 17 5 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x. plus. 3 y. plus. 2 z. equals. 1. Line 2: 2 x. plus. 4 y. plus. 6 z. equals. 6. Line 3: 3 x. plus. 2 y. plus. 5 z. equals. 1 6 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x. plus. 8. equals. 5 x. blank. blank. Line 2: blank. blank. 8. equals. 5 x. minus. 3 x. Line 3: blank. blank. 8. equals. 2 x. blank. blank. Line 4: blank. blank. 4. equals. x. blank. blank 7 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0 1 $\text{}\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x& \text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x. if x is less than 0. Case 2: f of x, equals x. if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y. equals. 7. Equation 2: 2 x, plus 3 y. equals. 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y. equals. 7. Row 2: 2 x, plus 3 y. equals. 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x. plus. 8. equals. 5 x. blank. blank. Step 2: blank. blank. 8. equals. 5 x. minus. 3 x. Step 3: blank. blank. 8. equals. 2 x. blank. blank. Step 4: blank. blank. 4. equals. x. blank. blank

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 1 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 17 2 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 17 3 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 17 4 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 1 5 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank 6 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 1 $\text{}\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x& \text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y, equals, 7. Equation 2: 2 x, plus 3 y, equals, 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y, equals, 7. Row 2: 2 x, plus 3 y, equals, 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x, plus, 8, equals, 5 x, blank, blank. Step 2: blank, blank, 8, equals, 5 x, minus, 3 x. Step 3: blank, blank, 8, equals, 2 x, blank, blank. Step 4: blank, blank, 4, equals, x, blank, blank

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineOverview_None.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 9 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x 10 $f\left(x\right)=\left\{\begin{array}{c}-x\text{if}x<0\\ x\text{if}x\ge 0\end{array}$ f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 11 $f\left(x\right)=\left\{\begin{array}{cc}-x& \text{if}x<0\\ x& \text{if}x\ge 0\end{array}$ f of x, equals, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Case:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $f\left(x\right)=\left\{\begin{array}{c}-x\text{if}x<0\\ x\text{if}x\ge 0\end{array}$ f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 1 $\text{}\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x& \text{if}x\ge 0\end{array}$ Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Equation:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Line:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Row:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Step:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank

English Clearspeak MultiLineEntries rule tests. Locale: en, Style: MultiLineLabel_Constraint:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30

English Clearspeak NamedSets rule tests. Locale: en, Style: Verbose.

 0 $ℝ$ the real numbers 1 $\mathbb{R}$ the real numbers 2 $ℂ$ the complex numbers 3 $\mathbb{C}$ the complex numbers 4 $ℤ$ the integers 5 $\mathbb{Z}$ the integers 6 $ℚ$ the rational numbers 7 $\mathbb{Q}$ the rational numbers 8 $ℕ$ the natural numbers 9 $\mathbb{N}$ the natural numbers 10 ${ℕ}_{0}$ the natural numbers with zero 11 ${\mathbb{N}}_{0}$ the natural numbers with zero 12 ${ℤ}^{+}$ the positive integers 13 ${\mathbb{Z}}^{+}$ the positive integers 14 ${ℤ}^{-}$ the negative integers 15 ${\mathbb{Z}}^{-}$ the negative integers 16 ${ℝ}^{2}$ r-two 17 ${\mathbb{R}}^{2}$ r-two 18 ${ℤ}^{3}$ z-three 19 ${\mathbb{Z}}^{3}$ z-three 20 ${ℂ}^{n}$ c-n 21 ${\mathbb{C}}^{n}$ c-n 22 ${ℝ}^{\infty }$ r-infinity 23 ${\mathbb{R}}^{\infty }$ r-infinity

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_Auto.

 0 $\left(25\right)$ 25 1 $\left(2x\right)$ 2 x 2 $2+\left(-2\right)$ 2 plus negative 2 3 $2-\left(-2\right)$ 2 minus negative 2 4 $2--2$ 2 minus negative 2 5 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 6 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared 7 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power 8 $\left(-2x\right)$ negative 2 x 9 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared 10 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared 11 $\left(\frac{1}{2}\right)$ one half 12 $\left(\frac{3}{4}x\right)$ three fourths x 13 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren 14 ${\left(\frac{1}{2}\right)}^{4}$ one half to the fourth power 15 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_Speak.

 0 $\left(25\right)$ open paren, 25, close paren 1 $\left(2x\right)$ open paren, 2 x, close paren 2 $2+\left(-2\right)$ 2 plus, open paren, negative 2, close paren 3 $2-\left(-2\right)$ 2 minus, open paren, negative 2, close paren 4 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 5 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared 6 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power 7 $\left(-2x\right)$ open paren, negative 2 x, close paren 8 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared 9 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared 10 $\left(\frac{1}{2}\right)$ open paren, one half, close paren 11 $\left(\frac{3}{4}x\right)$ open paren, three fourths x, close paren 12 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren 13 ${\left(\frac{1}{2}\right)}^{4}$ open paren, one half, close paren, to the fourth power 14 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_CoordPoint.

 0 $\left(1,2\right)$ the point with coordinates 1 comma 2 1 $\left(x,y\right)$ the point with coordinates x comma y 2 $\left(1,2,3\right)$ the point with coordinates 1 comma 2 comma 3 3 $\left(x,y,z\right)$ the point with coordinates x comma y comma z 4 $\left(1,2,386\right)$ the point with coordinates 1 comma 2 comma 386

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_Interval.

 0 $\left(a,\text{}b\right)$ the interval from a to b, not including a or b 1 $\left(0,\text{}1\right)$ the interval from 0 to 1, not including 0 or 1 2 $\left[a,\text{}b\right)$ the interval from a to b, including a, but not including b 3 $\left[0,\text{}1\right)$ the interval from 0 to 1, including 0, but not including 1 4 $\left(a,\text{}b\right]$ the interval from a to b, not including a, but including b 5 $\left(0,\text{}1\right]$ the interval from 0 to 1, not including 0, but including 1 6 $\left[a,\text{}b\right]$ the interval from a to b, including a and b 7 $\left[0,\text{}1\right]$ the interval from 0 to 1, including 0 and 1 8 $\left(-\infty ,\text{}b\right)$ the interval from negative infinity to b, not including b 9 $\left(-\infty ,\text{}1\right)$ the interval from negative infinity to 1, not including 1 10 $\left(-\infty ,b\right]$ the interval from negative infinity to b, including b 11 $\left(-\infty ,1\right]$ the interval from negative infinity to 1, including 1 12 $\left(a,\text{}\infty \right)$ the interval from a to infinity, not including a 13 $\left(1,\text{}\infty \right)$ the interval from 1 to infinity, not including 1 14 $\left[a,\infty \right)$ the interval from a to infinity, including a 15 $\left[1,\infty \right)$ the interval from 1 to infinity, including 1 16 $\left(-\infty ,\text{}\infty \right)$ the interval from negative infinity to infinity 17 $\left(-\infty ,\text{}+\infty \right)$ the interval from negative infinity to positive infinity

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_SpeakNestingLevel.

 0 $f\left(g\left(x\right)\right)$ f of, g of x 1 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren 2 $6-\left[2-\left(3+5\right)\right]$ 6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket 3 $6-\left(2-\left(3+5\right)\right)$ 6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren 4 $4\left[x+3\left(2x+1\right)\right]$ 4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket 5 $4\left(x+3\left(2x+1\right)\right)$ 4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren 6 $1+\left(2+\left(3+7\right)-\left(2+8\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren 7 $1+\left(2+\left(3-\left(4-5\right)\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren 8 $\left(\left(2+\left(3+4\right)+5\right)+6+\left(\left(7+\left(8+1\right)\right)+2\right)\right)$ open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close paren

English Clearspeak Parentheses rule tests. Locale: en, Style: Paren_Silent.

 0 $\left(25\right)$ 25 1 $\left(2x\right)$ 2 x 2 $2+\left(-2\right)$ 2 plus, negative 2 3 $2-\left(-2\right)$ 2 minus, negative 2 4 $2-{\left(-2\right)}^{3}$ 2 minus, negative 2, cubed 5 ${\left(2x\right)}^{2}$ 2 x, squared 6 ${\left(2x\right)}^{y+1}$ 2 x, raised to the y plus 1 power 7 $\left(-2x\right)$ negative 2 x 8 ${\left(-2x\right)}^{2}$ negative 2 x, squared 9 $-{\left(2x\right)}^{2}$ negative, 2 x, squared 10 $\left(\frac{1}{2}\right)$ one half 11 $\left(\frac{3}{4}x\right)$ three fourths x 12 $\left(\frac{11}{22}\right)$ 11 over 22 13 ${\left(\frac{1}{2}\right)}^{4}$ one half, to the fourth power 14 ${\left(\frac{11}{15}\right)}^{2}$ 11 over 15, squared

English Clearspeak Part2Symbols rule tests. Locale: en, Style: MultsymbolX_Auto.

 0 $6×8$ 6 times 8 1 $m×n$ m times n 2 $3×3$ 3 times 3

English Clearspeak Part2Symbols rule tests. Locale: en, Style: MultsymbolX_By.

 0 $6×8$ 6 by 8 1 $m×n$ m by n 2 $3×3$ 3 by 3

English Clearspeak Part2Symbols rule tests. Locale: en, Style: MultsymbolX_Cross.

 0 $u×v$ u cross v

English Clearspeak Part2Symbols rule tests. Locale: en, Style: MultsymbolDot_Auto.

 0 $6\cdot 8$ 6 times 8 1 $m\cdot n$ m times n 2 $3\cdot 3$ 3 times 3

English Clearspeak Part2Symbols rule tests. Locale: en, Style: MultsymbolDot_Dot.

 0 $6\cdot 8$ 6 dot 8 1 $m\cdot n$ m dot n 2 $3\cdot 3$ 3 dot 3

English Clearspeak Part2Symbols rule tests. Locale: en, Style: TriangleSymbol_Auto.

 0 $\Delta ABC$ triangle A B C 1 $\Delta DEF$ triangle D E F

English Clearspeak Part2Symbols rule tests. Locale: en, Style: TriangleSymbol_Delta.

 0 $\Delta x$ Delta x 1 $f\left(x+\Delta x\right)$ f of, open paren, x plus Delta x, close paren

English Clearspeak Part2Symbols rule tests. Locale: en, Style: Ellipses_Auto.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma dot dot dot 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma dot dot dot comma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot

English Clearspeak Part2Symbols rule tests. Locale: en, Style: Ellipses_AndSoOn.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma and so on 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma and so on up to comma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot

English Clearspeak Part2Symbols rule tests. Locale: en, Style: VerticalLine_Auto.

 0 $3|6$ 3 divides 6 1 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0 2 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 3 $f\left(x\right){|}_{x=5}$ f of x, evaluated at x equals 5 4 ${x}^{2}+2x{|}_{x=2}$ x squared plus 2 x, evaluated at x equals 2 5 ${x}^{2}+x{|}_{0}^{1}$ x squared plus x, evaluated at 1, minus the same expression evaluated at 0

English Clearspeak Part2Symbols rule tests. Locale: en, Style: VerticalLine_SuchThat.

 0 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0

English Clearspeak Part2Symbols rule tests. Locale: en, Style: VerticalLine_Divides.

 0 $3|6$ 3 divides 6

English Clearspeak Part2Symbols rule tests. Locale: en, Style: VerticalLine_Given.

 0 $P\text{}\left(A|B\right)$ P of, open paren, A given B, close paren

English Clearspeak Part2Symbols rule tests. Locale: en, Style: SetMemberSymbol_Auto.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x in the integers such that x is greater than 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers

English Clearspeak Part2Symbols rule tests. Locale: en, Style: SetMemberSymbol_Member.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x member of the integers such that x is greater than 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers

English Clearspeak Part2Symbols rule tests. Locale: en, Style: SetMemberSymbol_Element.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is an element of the integers then 2 x, is an even number period 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x element of the integers such that x is greater than 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not an element of the real numbers

English Clearspeak Part2Symbols rule tests. Locale: en, Style: SetMemberSymbol_Belongs.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 2 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers 3 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period 4 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 5 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers

English Clearspeak Part2Symbols rule tests. Locale: en, Style: Sets_woAll:SetMemberSymbol_Belongs.

 0 $\left\{x\in ℤ:2 the set of x belonging to the integers such that 2 is less than x is less than 7

English Clearspeak Part2Symbols rule tests. Locale: en, Style: Sets_woAll:SetMemberSymbol_Member.

 0 $\left\{x\in ℤ|x>5\right\}$ the set of x member of the integers such that x is greater than 5

English Clearspeak Part2Symbols rule tests. Locale: en, Style: Verbose.

 0 $\sum _{n=1}^{10}n$ the sum from n equals 1 to 10 of n 1 $\sum _{n=1}^{\infty }n$ the sum from n equals 1 to infinity of n 2 $\sum _{i\in {ℤ}^{+}}i$ the sum over i is a member of the positive integers, of i 3 $\sum _{S}i$ the sum over S, of i 4 $\sum {a}_{i}$ the sum of, a sub i 5 $\prod _{i=1}^{10}i$ the product from i equals 1 to 10 of i 6 $\prod _{i\in {ℤ}^{+}}\frac{i}{i+1}$ the product over i is a member of the positive integers, of, the fraction with numerator i, and denominator i plus 1 7 $\prod _{{ℤ}^{+}}\frac{i}{i+1}$ the product over the positive integers, of, the fraction with numerator i, and denominator i plus 1 8 $\prod {a}_{i}$ the product of, a sub i 9 $\underset{i=1}{\overset{10}{\cap }}{S}_{i}$ the intersection from i equals 1 to 10 of, S sub i 10 $\underset{i=1}{\overset{10}{\cup }}{S}_{i}$ the union from i equals 1 to 10 of, S sub i 11 $\cap {S}_{i}$ the intersection of, S sub i 12 $\cup {S}_{i}$ the union of, S sub i 13 $\underset{C}{\cap }{S}_{i}$ the intersection over C, of, S sub i 14 $\underset{C}{\cup }{S}_{i}$ the union over C, of, S sub i 15 $\int f\left(x\right)\text{}dx$ the integral of f of x, d x 16 ${\int }_{0}^{1}f\left(x\right)\text{}dx$ the integral from 0 to 1 of f of x, d x 17 $\underset{ℝ}{\int }f\left(x\right)\text{}dx$ the integral over the real numbers, of f of x, d x

English Clearspeak Part3Adornments rule tests. Locale: en, Style: Prime_Auto.

 0 ${A}^{\prime }{B}^{\prime }$ A prime, B prime 1 ${A}^{″}{B}^{″}$ A double prime, B double prime 2 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime 3 ${f}^{\prime }\left(x\right)$ f prime of x 4 ${f}^{″}\left(x\right)$ f double prime of x 5 ${f}^{‴}\left(x\right)$ f triple prime of x 6 ${1}^{\prime }$ 1 foot 7 ${2}^{\prime }$ 2 feet 8 ${1}^{″}$ 1 inch 9 ${2}^{″}$ 2 inches 10 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 11 $45°{10}^{\prime }$ 45 degrees, 10 minutes 12 $x°{y}^{\prime }$ x degrees, y minutes 13 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 14 $x°{y}^{\prime }{z}^{″}$ x degrees, y minutes, z seconds

English Clearspeak Part3Adornments rule tests. Locale: en, Style: Prime_Angle.

 0 ${1}^{\prime }$ 1 minute 1 ${x}^{\prime }$ x minutes 2 ${2}^{\prime }$ 2 minutes 3 ${1}^{″}$ 1 second 4 ${x}^{″}$ x seconds 5 ${2}^{″}$ 2 seconds 6 ${16}^{\prime }{10}^{″}$ 16 minutes, 10 seconds 7 ${x}^{\prime }{y}^{″}$ x minutes, y seconds 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime 11 ${A}^{″}{B}^{″}$ A double prime, B double prime 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime 13 ${f}^{\prime }\left(x\right)$ f prime of x 14 ${f}^{″}\left(x\right)$ f double prime of x 15 ${f}^{‴}\left(x\right)$ f triple prime of x

English Clearspeak Part3Adornments rule tests. Locale: en, Style: Prime_Length.

 0 ${1}^{\prime }$ 1 foot 1 ${x}^{\prime }$ x feet 2 ${2}^{\prime }$ 2 feet 3 ${1}^{″}$ 1 inch 4 ${x}^{″}$ x inches 5 ${2}^{″}$ 2 inches 6 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 7 ${x}^{\prime }{y}^{″}$ x feet, y inches 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime 11 ${A}^{″}{B}^{″}$ A double prime, B double prime 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime 13 ${f}^{\prime }\left(x\right)$ f prime of x 14 ${f}^{″}\left(x\right)$ f double prime of x 15 ${f}^{‴}\left(x\right)$ f triple prime of x

English Clearspeak Part3Adornments rule tests. Locale: en, Style: CombinationPermutation_Auto.

 0 ${}_{n}C_{r}$ n C r 1 ${}_{n}P_{r}$ n P r 2 ${}_{10}C_{3}$ 10 C 3 3 ${}_{10}P_{3}$ 10 P 3

English Clearspeak Part3Adornments rule tests. Locale: en, Style: CombinationPermutation_ChoosePermute.

 0 ${}_{n}C_{r}$ n choose r 1 ${}_{n}P_{r}$ n permute r 2 ${}_{10}C_{3}$ 10 choose 3 3 ${}_{10}P_{3}$ 10 permute 3

English Clearspeak Part3Adornments rule tests. Locale: en, Style: Bar_Auto.

 0 $\overline{f}$ f bar 1 $\overline{f}\left(x\right)$ f bar of x 2 $\overline{{f}_{1}}$ f sub 1, bar 3 $\overline{{f}_{1}}\left(x\right)$ f sub 1, bar of x 4 $\overline{z}$ z bar 5 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 6 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 7 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 8 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 9 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 10 $z\text{}\overline{z}$ z, z bar 11 $\overline{CD}$ the line segment C D 12 $\overline{{C}^{\prime }{D}^{\prime }}$ the line segment C prime D prime 13 $\overline{{C}^{″}{D}^{″}}$ the line segment C double prime D double prime 14 $\overline{{C}^{‴}{D}^{‴}}$ the line segment C triple prime D triple prime 15 $\stackrel{\text{def}}{=}$ is defined to be 16 $\left(f\circ g\right)\left(x\right)\stackrel{\text{def}}{=}f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, is defined to be, f of, g of x 17 $\stackrel{?}{=}$ equals sign with question mark over it 18 $x+2\stackrel{?}{=}4$ x plus 2 equals sign with question mark over it 4

English Clearspeak Part3Adornments rule tests. Locale: en, Style: Bar_Conjugate.

 0 $\overline{z}$ the complex conjugate of z 1 $z\text{}\overline{z}$ z, the complex conjugate of z 2 $\overline{3-2i}=3+2i$ the complex conjugate of 3 minus 2 i, equals 3 plus 2 i 3 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 4 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 5 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 6 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 7 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2

English Clearspeak Roots rule tests. Locale: en, Style: Roots_Auto.

 0 $\sqrt{2}$ the square root of 2 1 $3+\sqrt{2}$ 3 plus the square root of 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 4 $-\sqrt{2}$ the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the square root of 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 10 $\sqrt{x+1}$ the square root of x plus 1 11 $\sqrt{x}+1$ the square root of x, plus 1 12 $-\sqrt{x}$ the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, close paren, squared 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, close paren, squared 15 ${\sqrt{x}}^{2}$ the square root of x, squared 16 $\sqrt{{x}^{2}}$ the square root of x squared 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared 20 $\sqrt{\frac{1}{2}}$ the square root of one half 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a 24 $\sqrt{y}$ the cube root of y 25 $\sqrt{n}$ the fourth root of n 26 $\sqrt{35}$ the fifth root of 35 27 $\sqrt{146}$ the ninth root of 146 28 $\sqrt[n]{d}$ the n-th root of d 29 $\sqrt[m]{243}$ the m-th root of 243 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power 31 $\sqrt[j]{125}$ the j-th root of 125 32 $-\sqrt{y}$ negative the cube root of y 33 $-\sqrt{n}$ negative the fourth root of n

English Clearspeak Roots rule tests. Locale: en, Style: Roots_PosNegSqRoot.

 0 $\sqrt{2}$ the positive square root of 2 1 $3+\sqrt{2}$ 3 plus the positive square root of 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 4 $-\sqrt{2}$ the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the positive square root of 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 10 $\sqrt{x+1}$ the positive square root of x plus 1 11 $\sqrt{x}+1$ the positive square root of x, plus 1 12 $-\sqrt{x}$ the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, close paren, squared 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, close paren, squared 15 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the positive square root of x, close paren, squared 16 ${\sqrt{x}}^{2}$ the positive square root of x, squared 17 $\sqrt{{x}^{2}}$ the positive square root of x squared 18 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared 19 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared 20 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared 21 $\sqrt{\frac{1}{2}}$ the positive square root of one half 22 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66 23 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 24 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a 25 $\sqrt{y}$ the cube root of y 26 $\sqrt{n}$ the fourth root of n 27 $\sqrt{35}$ the fifth root of 35 28 $\sqrt{146}$ the ninth root of 146 29 $\sqrt[n]{d}$ the n-th root of d 30 $\sqrt[m]{243}$ the m-th root of 243 31 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power 32 $\sqrt[j]{125}$ the j-th root of 125 33 $-\sqrt{y}$ negative the cube root of y 34 $-\sqrt{n}$ negative the fourth root of n

English Clearspeak Roots rule tests. Locale: en, Style: Roots_RootEnd.

 0 $\sqrt{2}$ the square root of 2, end root 1 $3+\sqrt{2}$ 3 plus the square root of 2, end root 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 4 $-\sqrt{2}$ the negative square root of 2, end root 5 $3-\sqrt{2}$ 3 minus the square root of 2, end root 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 10 $\sqrt{x+1}$ the square root of x plus 1, end root 11 $\sqrt{x}+1$ the square root of x, end root, plus 1 12 $-\sqrt{x}$ the negative square root of x, end root 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, end root, close paren, squared 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, end root, close paren, squared 15 ${\sqrt{x}}^{2}$ the square root of x, end root, squared 16 $\sqrt{{x}^{2}}$ the square root of x squared, end root 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared, end root 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared, end root 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root 20 $\sqrt{\frac{1}{2}}$ the square root of one half, end root 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66, end root 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a 24 $\sqrt{y}$ the cube root of y, end root 25 $\sqrt{n}$ the fourth root of n, end root 26 $\sqrt{35}$ the fifth root of 35, end root 27 $\sqrt{146}$ the ninth root of 146, end root 28 $\sqrt[n]{d}$ the n-th root of d, end root 29 $\sqrt[m]{243}$ the m-th root of 243, end root 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root 31 $\sqrt[j]{125}$ the j-th root of 125, end root 32 $-\sqrt{y}$ negative the cube root of y, end root 33 $-\sqrt{n}$ negative the fourth root of n, end root

English Clearspeak Roots rule tests. Locale: en, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{2}$ the positive square root of 2, end root 1 $3+\sqrt{2}$ 3 plus the positive square root of 2, end root 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 4 $-\sqrt{2}$ the negative square root of 2, end root 5 $3-\sqrt{2}$ 3 minus the positive square root of 2, end root 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 10 $\sqrt{x+1}$ the positive square root of x plus 1, end root 11 $\sqrt{x}+1$ the positive square root of x, end root, plus 1 12 $-\sqrt{x}$ the negative square root of x, end root 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, end root, close paren, squared 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, end root, close paren, squared 15 ${\sqrt{x}}^{2}$ the positive square root of x, end root, squared 16 $\sqrt{{x}^{2}}$ the positive square root of x squared, end root 17 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared, end root 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared, end root 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root 20 $\sqrt{\frac{1}{2}}$ the positive square root of one half, end root 21 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66, end root 22 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a 24 $\sqrt{y}$ the cube root of y, end root 25 $\sqrt{n}$ the fourth root of n, end root 26 $\sqrt{35}$ the fifth root of 35, end root 27 $\sqrt{146}$ the ninth root of 146, end root 28 $\sqrt[n]{d}$ the n-th root of d, end root 29 $\sqrt[m]{243}$ the m-th root of 243, end root 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root 31 $\sqrt[j]{125}$ the j-th root of 125, end root 32 $-\sqrt{y}$ negative the cube root of y, end root 33 $-\sqrt{n}$ negative the fourth root of n, end root

English Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: en, Style: Sets_Auto.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 3 the set of all x in the natural numbers such that x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 5 $\left\{1,112,\text{}1,253\right\}$ the set 1 comma 112 comma 1 comma 253

English Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: en, Style: Sets_woAll.

 0 $\left\{x\in ℤ|2 the set of x in the integers such that 2 is less than x is less than 7 1 $\left\{x||x|>2\right\}$ the set of x such that, the absolute value of x, is greater than 2 2 $\left\{x\in ℤ:2 the set of x in the integers such that 2 is less than x is less than 7 3 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 4 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ the set 1 comma 112 comma 1 comma 253

English Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: en, Style: Sets_SilentBracket.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 3 the set of all x in the natural numbers such that x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ 1 comma 2 comma 3 5 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ 1 comma 112 comma 1 comma 253

English Clearspeak Trigometry rule tests. Locale: en, Style: Trig_Auto.

 0 $\mathrm{sin}x$ sine x 1 $\mathrm{cos}x$ cosine x 2 $\mathrm{tan}\theta$ tangent theta 3 $\mathrm{sec}\theta$ secant theta 4 $\mathrm{csc}x$ cosecant x 5 $\mathrm{cot}x$ cotangent x 6 ${\mathrm{sin}}^{2}x$ sine squared x 7 ${\mathrm{cos}}^{3}x$ cosine cubed x 8 ${\mathrm{tan}}^{2}x$ tangent squared x 9 ${\mathrm{sec}}^{3}x$ secant cubed x 10 ${\mathrm{csc}}^{2}x$ cosecant squared x 11 ${\mathrm{cot}}^{2}x$ cotangent squared x 12 $\mathrm{sin}2\pi$ sine 2 pi 13 $\mathrm{sin}\left(\pi k+\frac{\pi }{2}\right)$ the sine of, open paren, pi k, plus, pi over 2, close paren 14 $\mathrm{cos}\frac{\pi }{2}$ the cosine of, pi over 2 15 $\mathrm{sin}\frac{\pi }{2}$ the sine of, pi over 2 16 $\frac{\mathrm{sin}\pi }{2}$ sine pi over 2 17 $\frac{2}{\mathrm{sin}\pi }$ 2 over sine pi 18 $\frac{\mathrm{sin}\frac{\pi }{2}}{3}$ the fraction with numerator, the sine of, pi over 2, and denominator 3 19 $\mathrm{tan}\left(-\pi \right)$ tangent negative pi 20 $\mathrm{sin}\left(x+\pi \right)$ the sine of, open paren, x plus pi, close paren 21 $\mathrm{cos}\left(x+\frac{\pi }{2}\right)$ the cosine of, open paren, x plus, pi over 2, close paren 22 $\mathrm{cos}\left(\frac{\pi }{2}+x\right)$ the cosine of, open paren, pi over 2, plus x, close paren 23 ${\mathrm{sin}}^{2}x+{\mathrm{cos}}^{2}x=1$ sine squared x, plus, cosine squared x, equals 1 24 ${\mathrm{sin}}^{4}x$ the fourth power of sine x 25 ${\mathrm{cos}}^{5}x$ the fifth power of cosine x 26 ${\mathrm{tan}}^{n}x$ the n-th power of tangent x 27 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x 28 $\mathrm{tan}35°$ tangent 35 degrees 29 $\mathrm{tan}\left(\angle DEF\right)$ the tangent of, open paren, angle D E F, close paren 30 $\mathrm{tan}\left(\angle D\right)$ the tangent of, open paren, angle D, close paren 31 $\mathrm{sin}\left(x+y\right)=\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ the sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine y 32 $\mathrm{cos}\left(x+y\right)=\mathrm{cos}x\mathrm{cos}y-\mathrm{sin}x\mathrm{sin}y$ the cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine y 33 $\mathrm{tan}\left(x+y\right)=\frac{\mathrm{tan}x-\mathrm{tan}y}{1-\mathrm{tan}x\mathrm{tan}y}$ the tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent y 34 $\mathrm{tan}\left(\frac{\pi }{6}+\frac{2\pi }{3}\right)=\frac{\mathrm{tan}\frac{\pi }{6}-\mathrm{tan}\frac{2\pi }{3}}{1-\mathrm{tan}\frac{\pi }{6}\mathrm{tan}\frac{2\pi }{3}}$ the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3 35 $\mathrm{tan}2x=\frac{2\mathrm{tan}x}{1-{\mathrm{tan}}^{2}x}$ tangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared x 36 $\mathrm{cos}2x=2{\mathrm{cos}}^{2}x-1$ cosine 2 x, equals 2, cosine squared x, minus 1 37 $\mathrm{sin}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{2}}$ the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2 38 $\mathrm{tan}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{1+\mathrm{cos}x}}$ the tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine x 39 $\mathrm{cos}x\mathrm{cos}y=2\mathrm{cos}\frac{x+y}{2}\mathrm{cos}\frac{x-y}{2}$ cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2 40 ${\mathrm{sin}}^{-1}x$ the inverse sine of x 41 ${\mathrm{cos}}^{-1}x$ the inverse cosine of x 42 ${\mathrm{tan}}^{-1}x$ the inverse tangent of x 43 ${\mathrm{cot}}^{-1}x$ the inverse cotangent of x 44 ${\mathrm{sec}}^{-1}x$ the inverse secant of x 45 ${\mathrm{csc}}^{-1}x$ the inverse cosecant of x 46 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ the inverse sine of, the fraction with numerator the square root of 2, and denominator 2 47 ${\mathrm{cos}}^{-1}\frac{1}{2}$ the inverse cosine of one half 48 ${\mathrm{tan}}^{-1}17$ the inverse tangent of 17 49 ${\mathrm{cot}}^{-1}32$ the inverse cotangent of 32 50 ${\mathrm{sec}}^{-1}100$ the inverse secant of 100 51 ${\mathrm{csc}}^{-1}85$ the inverse cosecant of 85 52 ${\mathrm{sin}}^{-1}\left(-x\right)$ the inverse sine of negative x 53 ${\mathrm{cos}}^{-1}\left(-x\right)$ the inverse cosine of negative x 54 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ the inverse tangent of, open paren, negative x plus 12, close paren 55 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ the inverse cotangent of, open paren, negative x minus 1, close paren 56 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ the inverse sine of sine 0 57 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ the inverse cosecant of cosecant x 58 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 59 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 60 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ the inverse sine of, open paren, the cosine of, pi over 4, close paren 61 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, the inverse cosine of one half 62 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, the inverse tangent of 1 63 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, the inverse tangent of 1, close paren 64 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, the inverse tangent of negative 1, close paren 65 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ the inverse secant of secant x 66 $\mathrm{arcsin}x$ arc sine x 67 $\mathrm{arccos}x$ arc cosine x 68 $\mathrm{arctan}x$ arc tangent x 69 $\mathrm{sinh}x$ hyperbolic sine of x 70 $\mathrm{cosh}x$ hyperbolic cosine of x 71 $\mathrm{tanh}x$ hyperbolic tangent of x 72 $\mathrm{coth}x$ hyperbolic cotangent of x 73 $\mathrm{sech}x$ hyperbolic secant of x 74 $\mathrm{csch}x$ hyperbolic cosecant of x 75 ${\mathrm{sinh}}^{-1}x$ the inverse hyperbolic sine of x 76 ${\mathrm{cosh}}^{-1}x$ the inverse hyperbolic cosine of x 77 ${\mathrm{tanh}}^{-1}x$ the inverse hyperbolic tangent of x 78 ${\mathrm{coth}}^{-1}x$ the inverse hyperbolic cotangent of x 79 ${\mathrm{sech}}^{-1}x$ the inverse hyperbolic secant of x 80 ${\mathrm{csch}}^{-1}x$ the inverse hyperbolic cosecant of x 81 $\mathrm{sinh}\left({\mathrm{sinh}}^{-1}x\right)$ hyperbolic sine of, the inverse hyperbolic sine of x 82 $\mathrm{cosh}\left({\mathrm{cosh}}^{-1}x\right)$ hyperbolic cosine of, the inverse hyperbolic cosine of x 83 $\mathrm{tanh}\left({\mathrm{tanh}}^{-1}x\right)$ hyperbolic tangent of, the inverse hyperbolic tangent of x 84 $\mathrm{coth}\left({\mathrm{coth}}^{-1}x\right)$ hyperbolic cotangent of, the inverse hyperbolic cotangent of x 85 ${\mathrm{sinh}}^{-1}\left(\mathrm{sinh}x\right)$ the inverse hyperbolic sine of, hyperbolic sine of x 86 ${\mathrm{cosh}}^{-1}\left(\mathrm{cosh}x\right)$ the inverse hyperbolic cosine of, hyperbolic cosine of x 87 ${\mathrm{tanh}}^{-1}\left(\mathrm{tanh}x\right)$ the inverse hyperbolic tangent of, hyperbolic tangent of x 88 ${\mathrm{coth}}^{-1}\left(\mathrm{coth}x\right)$ the inverse hyperbolic cotangent of, hyperbolic cotangent of x

English Clearspeak Trigometry rule tests. Locale: en, Style: Trig_Auto:Roots_RootEnd.

 0 $\mathrm{sin}\left(-\frac{\pi }{8}\right)=-\frac{1}{2}\sqrt{2-\sqrt{2}}$ the sine of, open paren, negative, pi over 8, close paren, equals negative one half the square root of 2 minus the square root of 2, end root, end root 1 $\mathrm{tan}\frac{3\pi }{8}=\frac{\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}$ the tangent of, 3 pi over 8, equals, the fraction with numerator the square root of, the square root of 2, end root, plus 1, end root, and denominator the square root of, the square root of 2, end root, minus 1, end root 2 $\mathrm{tan}\frac{\pi }{12}=\frac{1}{2}\sqrt{2-\sqrt{3}}$ the tangent of, pi over 12, equals one half the square root of 2 minus the square root of 3, end root, end root

English Clearspeak Trigometry rule tests. Locale: en, Style: Trig_TrigInverse.

 0 ${\mathrm{sin}}^{-1}x$ sine inverse of x 1 ${\mathrm{cos}}^{-1}x$ cosine inverse of x 2 ${\mathrm{tan}}^{-1}x$ tangent inverse of x 3 ${\mathrm{cot}}^{-1}x$ cotangent inverse of x 4 ${\mathrm{sec}}^{-1}x$ secant inverse of x 5 ${\mathrm{csc}}^{-1}x$ cosecant inverse of x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ sine inverse of, the fraction with numerator the square root of 2, and denominator 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ cosine inverse of one half 8 ${\mathrm{tan}}^{-1}17$ tangent inverse of 17 9 ${\mathrm{cot}}^{-1}32$ cotangent inverse of 32 10 ${\mathrm{sec}}^{-1}100$ secant inverse of 100 11 ${\mathrm{csc}}^{-1}85$ cosecant inverse of 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ sine inverse of negative x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ cosine inverse of negative x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ tangent inverse of, open paren, negative x plus 12, close paren 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ cotangent inverse of, open paren, negative x minus 1, close paren 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ sine inverse of sine 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ cosecant inverse of cosecant x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, cosine inverse of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, cosine inverse of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ sine inverse of, open paren, the cosine of, pi over 4, close paren 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, cosine inverse of one half 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, tangent inverse of 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, tangent inverse of 1, close paren 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, tangent inverse of negative 1, close paren 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ secant inverse of secant x

English Clearspeak Trigometry rule tests. Locale: en, Style: Trig_ArcTrig.

 0 ${\mathrm{sin}}^{-1}x$ arc sine x 1 ${\mathrm{cos}}^{-1}x$ arc cosine x 2 ${\mathrm{tan}}^{-1}x$ arc tangent x 3 ${\mathrm{cot}}^{-1}x$ arc cotangent x 4 ${\mathrm{sec}}^{-1}x$ arc secant x 5 ${\mathrm{csc}}^{-1}x$ arc cosecant x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ arc sine of, the fraction with numerator the square root of 2, and denominator 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ arc cosine one half 8 ${\mathrm{tan}}^{-1}17$ arc tangent 17 9 ${\mathrm{cot}}^{-1}32$ arc cotangent 32 10 ${\mathrm{sec}}^{-1}100$ arc secant 100 11 ${\mathrm{csc}}^{-1}85$ arc cosecant 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ arc sine negative x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ arc cosine negative x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ arc tangent of, open paren, negative x plus 12, close paren 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ arc cotangent of, open paren, negative x minus 1, close paren 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ arc sine, sine 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ arc cosecant, cosecant x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, arc cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, arc cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ arc sine of, open paren, the cosine of, pi over 4, close paren 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, arc cosine one half 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, arc tangent 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, arc tangent 1, close paren 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, arc tangent negative 1, close paren 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ arc secant, secant x

English Clearspeak Units tests. Locale: en, Style: Verbose.

 0 ${\mathrm{in}}^{2}$ square inches 1 ${s}^{2}$ seconds to the second power 2 ${m}^{2}$ square meters 3 ${\mathrm{in}}^{3}$ cubic inches 4 ${s}^{3}$ seconds to the third power 5 ${m}^{3}$ cubic meters 6 ${\mathrm{in}}^{-1}$ reciprocal inches 7 ${\mathrm{in}}^{-1}{\mathrm{mm}}^{-1}$ reciprocal inches per millimeter 8 $\frac{\mathrm{in}}{\mathrm{mm}}$ inches per millimeter 9 $\mathrm{km}$ kilometers 10 $\mathrm{A}$ amperes 11 $\mathrm{\Omega }$ ohms 12 $\mathrm{k\Omega }$ kilohms 13 $\mathrm{°C}$ Celsius 14 $\mathrm{min}\mathrm{min}$ min of minutes 15 $3\mathrm{km}$ 3 kilometers 16 $\mathrm{km}+\mathrm{s}$ kilometers plus seconds 17 ${\mathrm{km}}^{2}$ square kilometers 18 ${\mathrm{m}}^{3}$ cubic meters 19 ${\mathrm{km}}^{4}$ kilometers to the fourth power 20 ${\mathrm{m}}^{-1}$ reciprocal meters 21 $\mathrm{s}{\mathrm{m}}^{-1}$ seconds per meter 22 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power 23 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power 24 $3{\mathrm{m}}^{-1}$ 3 reciprocal meters 25 $\frac{\mathrm{km}}{\mathrm{h}}$ kilometers per hour 26 $\mathrm{N}\frac{\mathrm{km}}{\mathrm{h}}$ Newtons kilometers per hour 27 $\frac{m}{\mathrm{km}}$ m over kilometers 28 $3\mathrm{km}\mathrm{h}$ 3 kilometers hours 29 $\mathrm{s}3m\mathrm{km}\mathrm{h}$ seconds 3 m kilometers hours 30 $\mathrm{km}{\mathrm{s}}^{2}3m\mathrm{km}\mathrm{h}$ kilometers seconds to the second power 3 m kilometers hours 31 $3m\mathrm{km}\mathrm{h}\frac{N}{{\mathrm{s}}^{2}}$ 3 m kilometers hours the fraction with numerator N and denominator seconds to the second power 32 $3m\mathrm{km}\mathrm{h}\frac{\mathrm{N}}{{\mathrm{s}}^{2}}$ 3 m kilometers hours Newtons per second to the second power 33 $4\mathrm{mm}$ 4 millimeters 34 $1\mathrm{mm}$ 1 millimeter 35 $4\mathrm{mm}$ 4 millimeters 36 $1\mathrm{mm}$ 1 millimeter 37 $ms$ meters seconds 38 $ms$ m seconds 39 $ms$ meters s 40 $ms$ meters seconds 41 $ms$ m seconds 42 $ms$ meters s 43 $msl$ meters seconds liters 44 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 45 $8000\mathrm{li}=8000\mathrm{li.}=8000\mathrm{links}=320\mathrm{rd}=320\mathrm{rd.}=320\mathrm{rods}=80\mathrm{ch}=80\mathrm{ch.}=80\mathrm{chains}=8\mathrm{fur}=8\mathrm{fur.}=8\mathrm{furlongs}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile 46 $43560\mathrm{sq ft}=43560\mathrm{sq. ft.}=43560{\mathrm{ft}}^{2}={{43560}^{\prime }}^{2}=43560\mathrm{square feet}=4840\mathrm{sq yd}=4840\mathrm{sq. yd.}=4840{\mathrm{yd}}^{2}=4840\mathrm{square yards}=160\mathrm{sq rd}=160\mathrm{sq. rd.}=160{\mathrm{rd}}^{2}=160\mathrm{square rods}=1\mathrm{ac}=1\mathrm{ac.}=1\mathrm{acre}=\frac{1}{640}\mathrm{sq mi}=\frac{1}{640}\mathrm{sq. mi.}=\frac{1}{640}{\mathrm{mi}}^{2}=\frac{1}{640}\mathrm{square miles}$ 43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles 47 $46656\mathrm{cu in}=46656\mathrm{cu. in.}=46656{\mathrm{in}}^{3}={{46656}^{″}}^{3}=46656\mathrm{cubic inches}=27\mathrm{cu ft}=27\mathrm{cu. ft.}=27{\mathrm{ft}}^{3}={{27}^{\prime }}^{3}=27\mathrm{cubic feet}=1\mathrm{cu yd}=1\mathrm{cu. yd.}=1{\mathrm{yd}}^{3}=1\mathrm{cubic yard}$ 46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard 48 $1024\mathrm{fl dr}=1024\mathrm{fl. dr.}=1024\mathrm{fluid drams}=768\mathrm{tsp}=768\mathrm{tsp.}=768\mathrm{teaspoons}=256\mathrm{Tbsp}=256\mathrm{Tbsp.}=256\mathrm{tablespoons}=128\mathrm{fl oz}=128\mathrm{fl. oz.}=128\mathrm{fluid ounces}=16\mathrm{cp}=16\mathrm{cp.}=16\mathrm{cups}=8\mathrm{pt}=8\mathrm{pt.}=8\mathrm{pints}=4\mathrm{qt}=4\mathrm{qt.}=4\mathrm{quarts}=1\mathrm{gal}=1\mathrm{gal.}=1\mathrm{gallon}$ 1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon 49 $256\mathrm{dr}=256\mathrm{dr.}=256\mathrm{drams}=16\mathrm{oz}=16\mathrm{oz.}=16\mathrm{ounces}=1\mathrm{#}=1\mathrm{lb}=1\mathrm{lb.}=1\mathrm{pounds}=100\mathrm{cwt}=100\mathrm{cwt.}=100\mathrm{hundredweights}=2000\mathrm{tons}$ 256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons 50 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 51 $1\mathrm{J}=1\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram times square meters times seconds to the negative 2 power 52 $1\mathrm{J}=1\mathrm{kg}{\mathrm{m}}^{2}{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 53 $1\mathrm{J}=1·\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 54 ${\mathrm{in}}^{3}$ cubic inches 55 $\frac{\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ kilometers kilograms seconds to the second power per joule 56 $\frac{3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 3 kilometers 1 kilogram seconds to the second power over joules 57 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over joules 58 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{5\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over 5 joules 59 $\mathrm{km}$ kilometers 60 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 61 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 62 $3\mathrm{km}4\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 4 kilograms seconds to the second power joules 63 $3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 1 kilogram seconds to the second power joules 64 $1\mathrm{km}\mathrm{s}+2\mathrm{km}\mathrm{s}+0\mathrm{km}\mathrm{s}+a\mathrm{km}\mathrm{s}+$ 1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus 65 $1\mathrm{km}+2\mathrm{km}+0\mathrm{km}+a\mathrm{km}$ 1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers 66 $1\frac{2}{3}\mathrm{kg}$ 1 and two thirds kilograms 67 $1\frac{2}{3}\mathrm{kg}\mathrm{km}$ 1 and two thirds kilograms kilometers 68 $1\mathrm{km}2\mathrm{kg}\mathrm{km}$ 1 kilometer 2 kilograms kilometers 69 $1\mathrm{km}\mathrm{kg}\mathrm{s}+2\mathrm{km}\mathrm{kg}\mathrm{s}+0\mathrm{km}\mathrm{kg}\mathrm{s}+a\mathrm{km}\mathrm{kg}\mathrm{s}+$ 1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus 70 $1\mathrm{}$ 1 dollar 71 $\mathrm{}1$ 1 dollars 72 $\mathrm{}$ dollars 73 $\mathrm{}$ dollars 74 $2\mathrm{}$ 2 dollars 75 $\mathrm{}2$ 2 dollars 76 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 77 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 78 $1\mathrm{€}+2\mathrm{€}+0\mathrm{€}+a\mathrm{€}$ 1 euro plus 2 euros plus 0 euros plus a euros 79 $1\mathrm{￡}+2\mathrm{￡}+0\mathrm{￡}+a\mathrm{￡}$ 1 pound plus 2 pounds plus 0 pounds plus a pounds

English Clearspeak Units tests. Locale: en, Style: Currency_Position.

 0 $1\mathrm{}$ 1 dollars 1 $\mathrm{}1$ dollars 1 2 $\mathrm{}$ dollars 3 $\mathrm{}$ dollars 4 $2\mathrm{}$ 2 dollars 5 $\mathrm{}2$ dollars 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollars plus 2 dollars plus 0 dollars plus a dollars 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollars plus dollars 2 plus 0 dollars plus dollars a

English Clearspeak Units tests. Locale: en, Style: Currency_Prefix.

 0 $1\mathrm{}$ dollars 1 1 $\mathrm{}1$ dollars 1 2 $\mathrm{}$ dollars 3 $\mathrm{}$ dollars 4 $2\mathrm{}$ dollars 2 5 $\mathrm{}2$ dollars 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a

English Clearspeak Neutral Fences rule tests. Locale: en, Style: Verbose.

 0 $|a|$ the absolute value of a 1 $｜a｜$ the absolute value of a 2 $¦a¦$ the absolute value of a 3 $\parallel a\parallel$ the metric of a 4 $⦀a⦀$ the metric of a 5 $⫴a⫴$ the metric of a 6 $‖a‖$ the metric of a 7 $｜a‖$ divides a double vertical bar 8 $\parallel a‖$ parallel to a double vertical bar 9 $｜a¦$ divides a divides 10 $⦀a‖$ triple vertical bar a double vertical bar 11 $a｜b$ a divides b 12 $a|b$ a divides b 13 $a¦b$ a divides b 14 $a‖b$ a double vertical bar b 15 $a\parallel b$ a parallel to b 16 $a⦀b$ a triple vertical bar b 17 $f｜g$ f divides g 18 $f|g$ f divides g 19 $f¦g$ f divides g 20 $f‖g$ f double vertical bar g 21 $f\parallel g$ f parallel to g 22 $f⦀g$ f triple vertical bar g 23 $\mathrm{sin}⦀g$ sine triple vertical bar g 24 $f|a|$ f of, the absolute value of a 25 $g|a|$ g of, the absolute value of a 26 $h|a|$ h of, the absolute value of a 27 $r|a|$ r times, the absolute value of a 28 $\mathrm{sin}|a|$ sine, the absolute value of a 29 $\sum |a|$ the sum of, the absolute value of a 30 $f‖a‖$ f of, the metric of a 31 $g‖a‖$ g of, the metric of a 32 $h‖a‖$ h of, the metric of a 33 $r‖a‖$ r times, the metric of a 34 $\mathrm{sin}‖a‖$ sine, the metric of a 35 $\sum ‖a‖$ the sum of, the metric of a

English Clearspeak Neutral Fences rule tests. Locale: en, Style: AbsoluteValue_AbsEnd.

 0 $|a|$ the absolute value of a, end absolute value 1 $｜a｜$ the absolute value of a, end absolute value 2 $¦a¦$ the absolute value of a, end absolute value 3 $\parallel a\parallel$ the metric of a, end metric 4 $⦀a⦀$ the metric of a, end metric 5 $⫴a⫴$ the metric of a, end metric 6 $‖a‖$ the metric of a, end metric 7 $｜a‖$ divides a double vertical bar 8 $\parallel a‖$ parallel to a double vertical bar 9 $｜a¦$ divides a divides 10 $⦀a‖$ triple vertical bar a double vertical bar 11 $a｜b$ a divides b 12 $a|b$ a divides b 13 $a¦b$ a divides b 14 $a‖b$ a double vertical bar b 15 $a\parallel b$ a parallel to b 16 $a⦀b$ a triple vertical bar b 17 $f|a|$ f of, the absolute value of a, end absolute value 18 $g|a|$ g of, the absolute value of a, end absolute value 19 $h|a|$ h of, the absolute value of a, end absolute value 20 $r|a|$ r times, the absolute value of a, end absolute value 21 $\mathrm{sin}|a|$ sine, the absolute value of a, end absolute value 22 $\sum |a|$ the sum of, the absolute value of a, end absolute value 23 $f‖a‖$ f of, the metric of a, end metric 24 $g‖a‖$ g of, the metric of a, end metric 25 $h‖a‖$ h of, the metric of a, end metric 26 $r‖a‖$ r times, the metric of a, end metric 27 $\mathrm{sin}‖a‖$ sine, the metric of a, end metric 28 $\sum ‖a‖$ the sum of, the metric of a, end metric 29 $f｜g$ f divides g 30 $f|g$ f divides g 31 $f¦g$ f divides g 32 $f‖g$ f double vertical bar g 33 $f\parallel g$ f parallel to g 34 $f⦀g$ f triple vertical bar g 35 $\mathrm{sin}⦀g$ sine triple vertical bar g