## Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Auto.

 0 $|x|$ the absolute value of x the absolute value of x 1 $|x+1|$ the absolute value of x plus 1 the absolute value of x plustegn 1 2 $|x|+1$ the absolute value of x, plus 1 the absolute value of x, plustegn 1 3 $|x|+|y|\ge |z|$ the absolute value of x, plus, the absolute value of y, is greater than or equal to, the absolute value of z the absolute value of x, plustegn, the absolute value of y, større end eller lig med, the absolute value of z 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

## Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_AbsEnd.

 0 $|x|$ the absolute value of x, end absolute value the absolute value of x, end absolute value 1 $|x+1|$ the absolute value of x plus 1, end absolute value the absolute value of x plustegn 1, end absolute value 2 $|x|+1$ the absolute value of x, end absolute value, plus 1 the absolute value of x, end absolute value, plustegn 1 3 $|x|+|y|\ge |z|$ the absolute value of x, end absolute value, plus, the absolute value of y, end absolute value, is greater than or equal to, the absolute value of z, end absolute value the absolute value of x, end absolute value, plustegn, the absolute value of y, end absolute value, større end eller lig med, the absolute value of z, end absolute value 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

## Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Cardinality.

 0 $|S|$ the cardinality of S the cardinality of S

## Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Determinant.

 0 $|M|$ the determinant of M the determinant of M

## Danish Clearspeak CapitalLetters rule tests. Locale: da, Style: Caps_Auto.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine A over a, equals, sine B over b sinus A over a, lig med, sinus B over b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine C c squared lig med a squared plustegn b squared minustegn 2 a b cosinus C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent A equals, a over b tangens A lig med, a over b 3 $AB$ A B A B 4 $aA$ a A a A 5 $bA$ b A b A 6 $Ba$ B a B a 7 $\angle ABC$ angle A B C vinkel A B C 8 $m\angle ABC$ the measure of angle A B C the measure of vinkel A B C 9 $m\angle A$ the measure of angle A the measure of vinkel A

## Danish Clearspeak CapitalLetters rule tests. Locale: da, Style: Caps_SayCaps.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine cap A over a, equals, sine cap B over b sinus stort A over a, lig med, sinus stort B over b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine cap C c squared lig med a squared plustegn b squared minustegn 2 a b cosinus stort C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent cap A equals, a over b tangens stort A lig med, a over b 3 $AB$ cap A, cap B stort A, stort B 4 $aA$ a, cap A a, stort A 5 $bA$ b, cap A b, stort A 6 $Ba$ cap B, a stort B, a 7 $\angle ABC$ angle cap A, cap B, cap C vinkel stort A, stort B, stort C 8 $m\angle ABC$ the measure of angle cap A, cap B, cap C the measure of vinkel stort A, stort B, stort C 9 $m\angle A$ the measure of angle cap A the measure of vinkel stort A 10 $\angle A$ angle cap A vinkel stort A

## Danish Clearspeak Coverage tests. Locale: da, Style: Verbose.

0$fg\left(x\right)$f of, g of xf of, g of x
1$fgx=f\left(x\right)+g\left(x\right)$f of, g of x, equals f of x, plus g of xf of, g of x, lig med f of x, plustegn g of x
2$\mathrm{sin}\left(x\right)y$sine x ysinus x y
3$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
4$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
5$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
6$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b2 lines, Line 1: a; lig med; b
7$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank2 lines, Line 1: a; lig med; b. Line 2: blank
8$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank2 lines, Line 1: a; lig med; b. Line 2: blank
9$\begin{array}{ccc}a& =& b\\ 1& & 2\end{array}$2 lines, Line 1: a; equals; b. Line 2: 1; blank; 22 lines, Line 1: a; lig med; b. Line 2: 1; blank; 2
10$45°{10}^{\prime }{20}^{″}$45 degrees, 10 minutes, 20 seconds45 grader, 10 minutter, 20 sekunder
11$1°{10}^{\prime }{20}^{″}$1 degree, 10 minutes, 20 seconds1 grad, 10 minutter, 20 sekunder
12$45°{1}^{\prime }{20}^{″}$45 degrees, 1 minute, 20 seconds45 grader, 1 minut, 20 sekunder
13$45°{10}^{\prime }{1}^{″}$45 degrees, 10 minutes, 1 second45 grader, 10 minutter, 1 sekund
14${1}^{\prime }{20}^{″}$1 foot, 20 inches1 fod, 20 tommer
15${10}^{\prime }{1}^{″}$10 feet, 1 inch10 fod, 1 tomme
16$\overline{)12}$enclosed with box 12enclosed with kasse 12
17$\overline{)12}$crossed out 12crossed out 12
18$\underset{\overline{)12}}{2}$12 crossed out with 212 crossed out with 2
19$\underset{2}{\overline{)12}}$12 crossed out with 212 crossed out with 2
20$\stackrel{2}{\overline{)12}}$12 crossed out with 212 crossed out with 2
21$\stackrel{\overline{)12}}{2}$12 crossed out with 212 crossed out with 2
22$\overline{)A}$vertical bar Avertical bar A
23$\overline{)A}$A horizontal barA horizontal bar
24$\overline{)A}$A vertical barA vertical bar
25$\overline{)A}$A over horizontal barA over horizontal bar
26$\sqrt{\sqrt[3]{a}+b}$the square root of, the cube root of a, plus bthe square root of, the cube root of a, plustegn b
27$\sqrt{\sqrt[4]{a}+b}$the square root of, the fourth root of a, plus bthe square root of, the fjerde root of a, plustegn b
28$\sqrt{\sqrt{a}+b}$the square root of, the square root of a, plus bthe square root of, the square root of a, plustegn b
29${}_{a}{}^{b}x_{c}^{d}$left sub a left super b x right sub c right super dleft sub a left super b x right sub c right super d
30${}_{a}{}^{g}{}_{b}{}^{h}x_{c}^{e}{}_{d}{}^{f}$left sub a b left super g h x right sub c d right super e fleft sub a b left super g h x right sub c d right super e f
31${}_{a}{}^{b}x^{d}$left sub a left super b x; right super dleft sub a left super b x; right super d
32${}_{a}{}^{b}x_{c}r$left sub a left super b x right sub c; rleft sub a left super b x right sub c; r
33$l{}^{b}x_{c}^{d}$l; left super b x right sub c right super dl; left super b x right sub c right super d
34${}_{a}x_{c}^{d}$left sub a; x right sub c right super dleft sub a; x right sub c right super d
35$\left\{x\notin A|B\right\}$the set of all x not in A such that Bthe set of all x not in A such that B
36$\left\{B\right\}$the set Bthe set B
37$\left\{\right\}$the empty setthe empty set
38${\mathbb{Q}}^{+}$the positive rational numbersthe positive rational numbers
39${ℚ}^{+}$the positive rational numbersthe positive rational numbers
40${\mathbb{Q}}^{-}$the negative rational numbersthe negative rational numbers
41${ℚ}^{-}$the negative rational numbersthe negative rational numbers
42${\mathbb{Q}}^{2}$q-twoq-to
43${ℚ}^{2}$q-twoq-to
44${\mathbb{N}}^{2}$n-twon-to
45${ℕ}^{2}$n-twon-to
46

# a

aa
47$\frac{10}{20}$10 over 2010 over 20
48$\frac{2\mathrm{km}}{\text{b}}$2 kilometers over b2 kilometer over b
49$1.4\overline{3}$the repeating decimal 1 point 4 followed by repeating digit 3the repeating decimal 1 point 4 followed by repeating digit 3
50${3}^{{2}^{2}}$3 raised to the 2 squared power3 raised to the 2 squared power
51${3}^{{i}^{2}}$3 raised to the i squared power3 raised to the I squared power
52${3}^{{\frac{2}{3}}^{2}}$3 raised to the two thirds squared power3 raised to the to tredjedele squared power
53${3}^{{2}^{3}}$3 raised to the 2 cubed power3 raised to the 2 cubed power
54${3}^{{i}^{3}}$3 raised to the i cubed power3 raised to the I cubed power
55${3}^{{\frac{2}{3}}^{3}}$3 raised to the two thirds cubed power3 raised to the to tredjedele cubed power
56$a\le b=c$a is less than or equal to b equals ca mindre end eller lig med b lig med c
57${3}^{\mathrm{sin}\left(2+x\right)}$3 raised to the sine of, open paren, 2 plus x, close paren, power3 raised to the sinus of, venstre parantes, 2 plustegn x, højre parantes, power
58$\sum ^{I}$sum under Isum under I
59$\stackrel{B}{A}$A under BA under B
60$\mathrm{det}A$determinant Adeterminant A

## Danish Clearspeak Coverage tests. Locale: da, Style: Prime_Angle.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 45 grader, 10 minutter, 20 sekunder 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 1 grad, 10 minutter, 20 sekunder 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 45 grader, 1 minut, 20 sekunder 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 45 grader, 10 minutter, 1 sekund 4 ${1}^{\prime }{20}^{″}$ 1 minute, 20 seconds 1 minut, 20 sekunder 5 ${10}^{\prime }{1}^{″}$ 10 minutes, 1 second 10 minutter, 1 sekund

## Danish Clearspeak Coverage tests. Locale: da, Style: Prime_Length.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 45 grader, 10 minutter, 20 sekunder 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 1 grad, 10 minutter, 20 sekunder 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 45 grader, 1 minut, 20 sekunder 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 45 grader, 10 minutter, 1 sekund 4 ${1}^{\prime }{20}^{″}$ 1 foot, 20 inches 1 fod, 20 tommer 5 ${10}^{\prime }{1}^{″}$ 10 feet, 1 inch 10 fod, 1 tomme

## Danish Clearspeak Coverage tests. Locale: da, Style: Enclosed_EndEnclose.

 0 $\overline{)12}$ enclosed with box 12 end enclosed enclosed with kasse 12 end enclosed 1 $\overline{)12}$ crossed out 12 end crossout crossed out 12 end crossout 2 $\underset{\overline{)12}}{2}$ crossed out 12 with 2 end crossout crossed out 12 with 2 end crossout 3 $\underset{2}{\overline{)12}}$ crossed out 12 with 2 end crossout crossed out 12 with 2 end crossout 4 $\stackrel{2}{\overline{)12}}$ crossed out 12 with 2 end crossout crossed out 12 with 2 end crossout 5 $\stackrel{\overline{)12}}{2}$ crossed out 12 with 2 end crossout crossed out 12 with 2 end crossout

## Danish Clearspeak Coverage tests. Locale: da, Style: Roots_PosNegSqRoot.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b the positive square root of, the positive square root of a, plustegn b

## Danish Clearspeak Coverage tests. Locale: da, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b, end root the positive square root of, the positive square root of a, plustegn b, end root 1 $\sqrt{-\sqrt{a}+b}$ the positive square root of, the negative square root of a, end root, plus b, end root the positive square root of, the negative square root of a, end root, plustegn b, end root

## Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Belongs.

 0 $\left\{x\notin A|B\right\}$ the set of all x not belonging to A such that B the set of all x not belonging to A such that B

## Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Element.

 0 $\left\{x\notin A|B\right\}$ the set of all x not an element of A such that B the set of all x not an element of A such that B

## Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Member.

 0 $\left\{x\notin A|B\right\}$ the set of all x not a member of A such that B the set of all x not a member of A such that B

## Danish Clearspeak Coverage tests. Locale: da, Style: MultiLineLabel_Case.

 0 $\begin{array}{c}f\left(x\right)=-x\text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0 2 cases, Case 1: f of x, lig med negative x, if x mindre end 0. Case 2: f of x, lig med x, if x større end eller lig med 0

## Danish Clearspeak Coverage tests. Locale: da, Style: MultiLineLabel_Constraint.

 0 $\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 constraints, Constraint 1: f of x, equals negative x; if x is less than 0. Constraint 2: f of x, equals x, if x is greater than or equal to 0 2 constraints, Constraint 1: f of x, lig med negative x; if x mindre end 0. Constraint 2: f of x, lig med x, if x større end eller lig med 0

## Danish Clearspeak Coverage tests. Locale: da, Style: VerticalLine_SuchThat.

 0 $3|6$ 3 such that 6 3 such that 6

## Danish Clearspeak Coverage tests. Locale: da, Style: Matrix_EndVector.

 0 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant

## Danish Clearspeak Coverage tests. Locale: da, Style: Paren_Speak.

 0 $\left(f+g\right)\left(2+x\right)$ open paren, f plus g, close paren, of, open paren, 2 plus x, close paren venstre parantes, f plustegn g, højre parantes, of, venstre parantes, 2 plustegn x, højre parantes

## Danish Clearspeak Coverage tests. Locale: da, Style: Exponent_Ordinal.

 0 ${x}^{A}$ x to the A x to the A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: Verbose.

 0 $\left\{z\in A:z\right\}$ the set of all z in A such that z the set of all z in A such that z 1 $\left\{z∊A:z\right\}$ the set of all z in A such that z the set of all z in A such that z 2 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z the set of all z not in A such that z 3 $\left\{A\ni z:z\right\}$ the set of all A contains as member z such that z the set of all A indeholder som element z such that z 4 $\left\{A∍z:z\right\}$ the set of all A contains as member z such that z the set of all A indeholder som element z such that z 5 $\left\{A\not\ni z:z\right\}$ the set of all A does not contain as member z such that z the set of all A indeholder ikke som element z such that z 6 $z\in A$ z is a member of A z is a member of A 7 $z∊A$ z is a member of A z is a member of A 8 $z\notin A$ z is not a member of A z is not a member of A 9 $A\ni z$ A contains as member z A indeholder som element z 10 $A∍z$ A contains as member z A indeholder som element z 11 $A\not\ni z$ A does not contain as member z A indeholder ikke som element z 12 $\sum _{z\in A}$ sum over z is a member of A sum over z is a member of A 13 $\sum _{z∊A}$ sum over z is a member of A sum over z is a member of A 14 $\sum _{z\notin A}$ sum over z is not a member of A sum over z is not a member of A 15 $\sum _{A\ni z}$ sum over A contains as member z sum over A indeholder som element z 16 $\sum _{A∍z}$ sum over A contains as member z sum over A indeholder som element z 17 $\sum _{A\not\ni z}$ sum over A does not contain as member z sum over A indeholder ikke som element z

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Auto.

 0 $z\in A$ z is a member of A z is a member of A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z the set of all z in A such that z 2 $\sum _{z\in A}$ sum over z is a member of A sum over z is a member of A 3 $z\notin A$ z is not a member of A z is not a member of A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z the set of all z not in A such that z 5 $\sum _{z\notin A}$ sum over z is not a member of A sum over z is not a member of A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Member.

 0 $z\in A$ z is a member of A z is a member of A 1 $\left\{z\in A:z\right\}$ the set of all z member of A such that z the set of all z member of A such that z 2 $\sum _{z\in A}$ sum over z is a member of A sum over z is a member of A 3 $z\notin A$ z is not a member of A z is not a member of A 4 $\left\{z\notin A:z\right\}$ the set of all z not a member of A such that z the set of all z not a member of A such that z 5 $\sum _{z\notin A}$ sum over z is not a member of A sum over z is not a member of A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Element.

 0 $z\in A$ z is an element of A z is an element of A 1 $\left\{z\in A:z\right\}$ the set of all z element of A such that z the set of all z element of A such that z 2 $\sum _{z\in A}$ sum over z is an element of A sum over z is an element of A 3 $z\notin A$ z is not an element of A z is not an element of A 4 $\left\{z\notin A:z\right\}$ the set of all z not an element of A such that z the set of all z not an element of A such that z 5 $\sum _{z\notin A}$ sum over z is not an element of A sum over z is not an element of A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_In.

 0 $z\in A$ z is in A z is in A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z the set of all z in A such that z 2 $\sum _{z\in A}$ sum over z is in A sum over z is in A 3 $z\notin A$ z is not in A z is not in A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z the set of all z not in A such that z 5 $\sum _{z\notin A}$ sum over z is not in A sum over z is not in A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Belongs.

 0 $z\in A$ z belongs to A z belongs to A 1 $\left\{z\in A:z\right\}$ the set of all z belonging to A such that z the set of all z belonging to A such that z 2 $\sum _{z\in A}$ sum over z belongs to A sum over z belongs to A 3 $z\notin A$ z does not belong to A z does not belong to A 4 $\left\{z\notin A:z\right\}$ the set of all z not belonging to A such that z the set of all z not belonging to A such that z 5 $\sum _{z\notin A}$ sum over z does not belong to A sum over z does not belong to A

## Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Belongs:Caps_SayCaps:Fraction_GeneralEndFrac.

 0 $\left\{a\in A|\frac{1}{a}\right\}$ the set of all a belonging to, cap A such that, the fraction with numerator 1, and denominator a, end fraction the set of all a belonging to, stort A such that, the fraction with numerator 1, and denominator a, end fraction

## Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_Auto.

 0 ${3}^{2}$ 3 squared 3 squared 1 ${3}^{3}$ 3 cubed 3 cubed 2 ${3}^{5}$ 3 to the fifth power 3 to the femte power 3 ${3}^{1}$ 3 to the first power 3 to the første power 4 ${b}^{1}$ b to the first power b to the første power 5 ${3}^{5.0}$ 3 raised to the 5.0 power 3 raised to the 5,0 power 6 ${3}^{0}$ 3 to the 0 power 3 to the 0 power 7 ${4}^{11}$ 4 to the 11th power 4 to the 11. power 8 ${3}^{-2}$ 3 to the negative 2 power 3 to the negative 2 power 9 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 raised to the negative 2,0 power 10 ${4}^{x}$ 4 to the x-th power 4 to the x-th power 11 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 raised to the y plustegn 2 power 12 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power venstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power 13 ${p}_{1}^{2}$ p sub 1, squared p sub 1, squared 14 ${p}_{1}^{3}$ p sub 1, cubed p sub 1, cubed 15 ${p}_{1}^{4}$ p sub 1, to the fourth power p sub 1, to the fjerde power 16 ${p}_{1}^{10}$ p sub 1, to the tenth power p sub 1, to the tiende power 17 ${p}_{1}^{x+1}$ p sub 1, raised to the x plus 1 power p sub 1, raised to the x plustegn 1 power 18 ${p}_{{x}_{1}}^{2}$ p sub, x sub 1, squared p sub, x sub 1, squared 19 ${p}_{{x}_{1}}^{3}$ p sub, x sub 1, cubed p sub, x sub 1, cubed 20 ${p}_{{x}_{1}}^{4}$ p sub, x sub 1, to the fourth power p sub, x sub 1, to the fjerde power 21 ${p}_{{x}_{1}}^{10}$ p sub, x sub 1, to the tenth power p sub, x sub 1, to the tiende power 22 ${p}_{{x}_{1}}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p sub, x sub 1, raised to the y plustegn 1 power 23 ${3}^{{2}^{2}}$ 3 raised to the 2 squared power 3 raised to the 2 squared power 24 ${3}^{2{x}^{2}}$ 3 raised to the 2 x squared power 3 raised to the 2 x squared power 25 ${5}^{{2}^{3}}$ 5 raised to the 2 cubed power 5 raised to the 2 cubed power 26 ${5}^{2{x}^{3}}$ 5 raised to the 2 x cubed power 5 raised to the 2 x cubed power 27 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 squared plus 1, end exponent 3 raised to the exponent, 2 squared plustegn 1, end exponent 28 ${3}^{{2}^{2}}+1$ 3 raised to the 2 squared power, plus 1 3 raised to the 2 squared power, plustegn 1 29 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x squared plus 3 x cubed, end exponent 2 raised to the exponent, x squared plustegn 3 x cubed, end exponent 30 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 3 raised to the exponent, 3 to the fjerde power, end exponent 31 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 3 raised to the exponent, 3 to the fjerde power, plustegn 2, end exponent 32 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 3 raised to the exponent, 3 to the fjerde power, end exponent, plustegn 2 33 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 2 raised to the exponent, x to the fjerde power, end exponent 34 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent 35 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 3 raised to the exponent, 3 to the tiende power, end exponent 36 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 3 raised to the exponent, 3 to the tiende power, plustegn 1, end exponent 37 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 3 raised to the exponent, 3 to the tiende power, end exponent, plustegn 1 38 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, squared, end exponent 39 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende power, end exponent 40 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent 41 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, plustegn 2, end exponent 42 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, end exponent, plustegn 2 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponent e raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, squared, end exponent 44 ${2}^{n}$ 2 to the n-th power 2 to the n-th power 45 ${2}^{m}$ 2 to the m-th power 2 to the m-th power 46 ${2}^{i}$ 2 to the i-th power 2 to the I-th power 47 ${2}^{j}$ 2 to the j-th power 2 to the j-th power 48 ${2}^{a}$ 2 to the a-th power 2 to the a-th power

## Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_Ordinal.

 0 ${3}^{2}$ 3 to the second 3 to the anden 1 ${3}^{3}$ 3 to the third 3 to the tredje 2 ${3}^{0}$ 3 to the zero 3 to the zero 3 ${3}^{1}$ 3 to the first 3 to the første 4 ${3}^{5}$ 3 to the fifth 3 to the femte 5 ${4}^{3.0}$ 4 raised to the 3.0 power 4 raised to the 3,0 power 6 ${4}^{11}$ 4 to the eleventh 4 to the ellevte 7 ${3}^{-2}$ 3 to the negative 2 3 to the negative 2 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 raised to the negative 2,0 power 9 ${4}^{x}$ 4 to the x-th 4 to the x-th 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 raised to the y plustegn 2 power 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power venstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power 12 ${p}_{1}{}^{2}$ p sub 1, to the second p sub 1, to the anden 13 ${p}_{1}{}^{3}$ p sub 1, to the third p sub 1, to the tredje 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth p sub 1, to the fjerde 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth p sub 1, to the tiende 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power p sub 1, raised to the x plustegn 1 power 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second p sub, x sub 1, to the anden 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third p sub, x sub 1, to the tredje 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth p sub, x sub 1, to the fjerde 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth p sub, x sub 1, to the tiende 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p sub, x sub 1, raised to the y plustegn 1 power 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second, end exponent 3 raised to the exponent, 2 to the anden, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second, end exponent 3 raised to the exponent, 2 x to the anden, end exponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third, end exponent 5 raised to the exponent, 2 to the tredje, end exponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third, end exponent 5 raised to the exponent, 2 x to the tredje, end exponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second, plus 1, end exponent 3 raised to the exponent, 2 to the anden, plustegn 1, end exponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second, end exponent, plus 1 3 raised to the exponent, 2 to the anden, end exponent, plustegn 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second, plus 3 x to the third, end exponent 2 raised to the exponent, x to the anden, plustegn 3 x to the tredje, end exponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth, end exponent 3 raised to the exponent, 3 to the fjerde, end exponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth, plus 2, end exponent 3 raised to the exponent, 3 to the fjerde, plustegn 2, end exponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth, end exponent, plus 2 3 raised to the exponent, 3 to the fjerde, end exponent, plustegn 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth, end exponent 2 raised to the exponent, x to the fjerde, end exponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth, end exponent 3 raised to the exponent, 3 to the tiende, end exponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth, plus 1, end exponent 3 raised to the exponent, 3 to the tiende, plustegn 1, end exponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth, end exponent, plus 1 3 raised to the exponent, 3 to the tiende, end exponent, plustegn 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the anden, end exponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende, end exponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th, plustegn 2, end exponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 2 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th, end exponent, plustegn 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second, end exponent e raised to the exponent, negative en halve x to the anden, end exponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponent e raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, to the anden, end exponent

## Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_OrdinalPower.

 0 ${3}^{2}$ 3 to the second power 3 to the anden power 1 ${3}^{3}$ 3 to the third power 3 to the tredje power 2 ${3}^{0}$ 3 to the zero power 3 to the zero power 3 ${3}^{1}$ 3 to the first power 3 to the første power 4 ${3}^{5}$ 3 to the fifth power 3 to the femte power 5 ${3}^{5.0}$ 3 raised to the 5.0 power 3 raised to the 5,0 power 6 ${4}^{11}$ 4 to the eleventh power 4 to the ellevte power 7 ${3}^{-2}$ 3 to the negative 2 power 3 to the negative 2 power 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 raised to the negative 2,0 power 9 ${4}^{x}$ 4 to the x-th power 4 to the x-th power 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 raised to the y plustegn 2 power 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power venstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power 12 ${p}_{1}{}^{2}$ p sub 1, to the second power p sub 1, to the anden power 13 ${p}_{1}{}^{3}$ p sub 1, to the third power p sub 1, to the tredje power 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth power p sub 1, to the fjerde power 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth power p sub 1, to the tiende power 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power p sub 1, raised to the x plustegn 1 power 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second power p sub, x sub 1, to the anden power 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third power p sub, x sub 1, to the tredje power 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth power p sub, x sub 1, to the fjerde power 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth power p sub, x sub 1, to the tiende power 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p sub, x sub 1, raised to the y plustegn 1 power 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second power, end exponent 3 raised to the exponent, 2 to the anden power, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second power, end exponent 3 raised to the exponent, 2 x to the anden power, end exponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third power, end exponent 5 raised to the exponent, 2 to the tredje power, end exponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third power, end exponent 5 raised to the exponent, 2 x to the tredje power, end exponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second power, plus 1, end exponent 3 raised to the exponent, 2 to the anden power, plustegn 1, end exponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second power, end exponent, plus 1 3 raised to the exponent, 2 to the anden power, end exponent, plustegn 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent 2 raised to the exponent, x to the anden power, plustegn 3 x to the tredje power, end exponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 3 raised to the exponent, 3 to the fjerde power, end exponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 3 raised to the exponent, 3 to the fjerde power, plustegn 2, end exponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 3 raised to the exponent, 3 to the fjerde power, end exponent, plustegn 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 2 raised to the exponent, x to the fjerde power, end exponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 3 raised to the exponent, 3 to the tiende power, end exponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 3 raised to the exponent, 3 to the tiende power, plustegn 1, end exponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 3 raised to the exponent, 3 to the tiende power, end exponent, plustegn 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the anden power, end exponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende power, end exponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, plustegn 2, end exponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, end exponent, plustegn 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second power, end exponent e raised to the exponent, negative en halve x to the anden power, end exponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponent e raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, to the anden power, end exponent

## Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_AfterPower.

 0 ${3}^{2}$ 3 raised to the power 2 3 raised to the power 2 1 ${3}^{3}$ 3 raised to the power 3 3 raised to the power 3 2 ${3}^{1}$ 3 raised to the power 1 3 raised to the power 1 3 ${3}^{0}$ 3 raised to the power 0 3 raised to the power 0 4 ${3}^{5}$ 3 raised to the power 5 3 raised to the power 5 5 ${3}^{5.0}$ 3 raised to the power 5.0 3 raised to the power 5,0 6 ${4}^{11}$ 4 raised to the power 11 4 raised to the power 11 7 ${3}^{-2}$ 3 raised to the power negative 2 3 raised to the power negative 2 8 ${3}^{-2.0}$ 3 raised to the power negative 2.0 3 raised to the power negative 2,0 9 ${4}^{x}$ 4 raised to the power x 4 raised to the power x 10 ${3}^{y+2}$ 3 raised to the power y plus 2 3 raised to the power y plustegn 2 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8 venstre parantes, 2 y, minustegn 3, højre parantes, raised to the power 3 z plustegn 8 12 ${p}_{1}{}^{2}$ p sub 1, raised to the power 2 p sub 1, raised to the power 2 13 ${p}_{1}{}^{3}$ p sub 1, raised to the power 3 p sub 1, raised to the power 3 14 ${p}_{1}{}^{4}$ p sub 1, raised to the power 4 p sub 1, raised to the power 4 15 ${p}_{1}{}^{10}$ p sub 1, raised to the power 10 p sub 1, raised to the power 10 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the power x plus 1 p sub 1, raised to the power x plustegn 1 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, raised to the power 2 p sub, x sub 1, raised to the power 2 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, raised to the power 3 p sub, x sub 1, raised to the power 3 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, raised to the power 4 p sub, x sub 1, raised to the power 4 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, raised to the power 10 p sub, x sub 1, raised to the power 10 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the power y plus 1 p sub, x sub 1, raised to the power y plustegn 1 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 3 raised to the exponent, 2 raised to the power 2, end exponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 3 raised to the exponent, 2 x raised to the power 2, end exponent 24 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 3 raised to the exponent, 2 raised to the power 2, end exponent 25 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 3 raised to the exponent, 2 x raised to the power 2, end exponent 26 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 raised to the power 3, end exponent 5 raised to the exponent, 2 raised to the power 3, end exponent 27 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x raised to the power 3, end exponent 5 raised to the exponent, 2 x raised to the power 3, end exponent 28 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 raised to the power 2, plus 1, end exponent 3 raised to the exponent, 2 raised to the power 2, plustegn 1, end exponent 29 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 raised to the power 2, end exponent, plus 1 3 raised to the exponent, 2 raised to the power 2, end exponent, plustegn 1 30 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent 2 raised to the exponent, x raised to the power 2, plustegn 3 x raised to the power 3, end exponent 31 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 raised to the power 4, end exponent 3 raised to the exponent, 3 raised to the power 4, end exponent 32 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 raised to the power 4, plus 2, end exponent 3 raised to the exponent, 3 raised to the power 4, plustegn 2, end exponent 33 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 raised to the power 4, end exponent, plus 2 3 raised to the exponent, 3 raised to the power 4, end exponent, plustegn 2 34 ${2}^{{x}^{4}}$ 2 raised to the exponent, x raised to the power 4, end exponent 2 raised to the exponent, x raised to the power 4, end exponent 35 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the power x plus 3, end exponent 2 raised to the exponent, 10 raised to the power x plustegn 3, end exponent 36 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 raised to the power 10, end exponent 3 raised to the exponent, 3 raised to the power 10, end exponent 37 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 raised to the power 10, plus 1, end exponent 3 raised to the exponent, 3 raised to the power 10, plustegn 1, end exponent 38 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 raised to the power 10, end exponent, plus 1 3 raised to the exponent, 3 raised to the power 10, end exponent, plustegn 1 39 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power 2, end exponent 40 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power 10, end exponent 41 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y plustegn 2, end exponent 42 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y, plustegn 2, end exponent 43 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 2 3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y, end exponent, plustegn 2 44 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x raised to the power 2, end exponent e raised to the exponent, negative en halve x raised to the power 2, end exponent 45 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponent e raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, raised to the power 2, end exponent

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Auto.

 0 $\frac{1}{2}$ one half en halve 1 $\frac{12}{32}$ 12 over 32 12 over 32 2 $\frac{x}{y}$ x over y x over y 3 $\frac{2x}{3y}$ 2 x over 3 y 2 x over 3 y 4 $\frac{xy}{cd}$ x y over c d x y over c d 5 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third en halve over en tredjedel 6 $\frac{-x}{y}$ negative x over y negative x over y 7 $\frac{-2x}{3y}$ negative 2 x over 3 y negative 2 x over 3 y 8 $\frac{xy}{-cd}$ x y over negative c d x y over negative c d 9 $\frac{\frac{1}{2}}{-\frac{1}{3}}$ one half over negative one third en halve over negative en tredjedel 10 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 the fraction with numerator 2 plustegn 3, and denominator 13 11 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 the fraction with numerator x plustegn y, and denominator 2 12 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y the fraction with numerator x plustegn y, and denominator x minustegn y 13 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds the fraction with numerator x plustegn y, and denominator x minustegn y, plustegn to tredjedele 14 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles over gallon 15 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles over 3 gallons 16 $\frac{2\text{}\text{miles}}{3\text{}\text{gallons}}$ 2 miles over 3 gallons 2 miles over 3 gallons 17 $\frac{\text{rise}}{\text{run}}$ rise over run rise over run 18 $\frac{\text{successful outcomes}}{\text{total outcomes}}$ successful outcomes over total outcomes successful outcomes over total outcomes 19 $\frac{6\text{ways of rolling a 7}}{36\text{ways of rolling the pair of dice}}$ 6 ways of rolling a 7 over 36 ways of rolling the pair of dice 6 ways of rolling a 7 over 36 ways of rolling the pair of dice 20 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third en halve over en tredjedel 21 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third the fraction with numerator 1, and denominator, 2 over en tredjedel 22 $\frac{\frac{1}{2}}{3}$ one half over 3 en halve over 3 23 $\frac{1}{\frac{2}{3}}$ 1 over two thirds 1 over to tredjedele 24 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51 the fraction with numerator, 11 over 32, and denominator, 16 over 51 25 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51 the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51 26 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2 the fraction with numerator 1 plustegn, 4 over x, and denominator 2 27 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x the fraction with numerator 3, and denominator 2 plustegn, 4 over x 28 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half the fraction with numerator, 10 over 22, and denominator en halve 29 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds the fraction with numerator 1 plustegn to tredjedele, and denominator 1 minustegn to tredjedele 30 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2 the fraction with numerator 1 plustegn, x over 2, and denominator 1 minustegn, x over 2 31 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1 the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 1, plustegn 1, and denominator x plustegn 1 32 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16 the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 4, plustegn en halve, and denominator x plustegn, 1 over 16 33 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x 1 plustegn, the fraction with numerator x, and denominator 1 plustegn, 2 over x 34 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3 1 plustegn, the fraction with numerator x plustegn 3, and denominator 1 plustegn, the fraction with numerator 2, and denominator x plustegn 3 35 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn 1 36 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn tre prikker 37 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot a sub 0, plustegn, the fraction with numerator 1, and denominator, a sub 1, plustegn, the fraction with numerator 1, and denominator, a sub 2, plustegn, the fraction with numerator 1, and denominator, a sub 3, plustegn tre prikker 38 $\frac{f\left(x\right)}{g\left(x\right)}$ f of x, over g of x f of x, over g of x 39 $\frac{f\left(x\right)+g\left(x\right)}{g\left(x\right)}$ the fraction with numerator f of x, plus g of x, and denominator g of x the fraction with numerator f of x, plustegn g of x, and denominator g of x 40 $\frac{f\left(x+1\right)}{g\left(x\right)}$ the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of x the fraction with numerator f of, venstre parantes, x plustegn 1, højre parantes, and denominator g of x 41 $\frac{f\left(x\right)}{2}$ f of x, over 2 f of x, over 2 42 $\frac{2}{f\left(x\right)}$ 2 over f of x 2 over f of x 43 $\frac{2}{g\left(x\right)+g\left(x+1\right)}$ the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close paren the fraction with numerator 2, and denominator g of x, plustegn g of, venstre parantes, x plustegn 1, højre parantes 44 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x sinus x over cosinus x 45 $\frac{\mathrm{sin}x+\mathrm{cos}x}{\mathrm{cos}x}$ the fraction with numerator sine x plus cosine x, and denominator cosine x the fraction with numerator sinus x plustegn cosinus x, and denominator cosinus x 46 $\frac{\mathrm{sin}2x}{\mathrm{cos}3x}$ sine 2 x over cosine 3 x sinus 2 x over cosinus 3 x 47 $\frac{\mathrm{sin}\left(x+y\right)}{\mathrm{cos}\left(x+y\right)}$ the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close paren the fraction with numerator, the sinus of, venstre parantes, x plustegn y, højre parantes, and denominator, the cosinus of, venstre parantes, x plustegn y, højre parantes 48 $\frac{f\left(2x\right)}{g\left(3x\right)}$ f of 2 x, over g of 3 x f of 2 x, over g of 3 x 49 $\frac{\mathrm{log}x}{\mathrm{log}y}$ log x over log y logaritme x over logaritme y 50 $\frac{\mathrm{log}2x}{\mathrm{log}3y}$ log 2 x over log 3 y logaritme 2 x over logaritme 3 y 51 $\frac{{\mathrm{log}}_{10}x}{{\mathrm{log}}_{5}y}$ the log base 10 of, x, over, the log base 5 of, y the logaritme base 10 of, x, over, the logaritme base 5 of, y 52 $\frac{{\mathrm{log}}_{10}2x}{{\mathrm{log}}_{5}3y}$ the log base 10 of, 2 x, over, the log base 5 of, 3 y the logaritme base 10 of, 2 x, over, the logaritme base 5 of, 3 y 53 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}y}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log y the fraction with numerator, the logaritme of, venstre parantes, x plustegn 1, højre parantes, and denominator logaritme y 54 $\frac{{f}_{1}\left(x\right)}{{g}_{1}\left(x\right)}$ f sub 1, of x, over, g sub 1, of x f sub 1, of x, over, g sub 1, of x

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Over.

 0 $\frac{1}{2}$ 1 over 2 1 over 2 1 $\frac{12}{32}$ 12 over 32 12 over 32 2 $\frac{2+3}{13}$ 2 plus 3 over 13 2 plustegn 3 over 13 3 $\frac{x+y}{2}$ x plus y over 2 x plustegn y over 2 4 $\frac{x+y}{x-y}$ x plus y over x minus y x plustegn y over x minustegn y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, plus, 2 over 3 x plustegn y over x minustegn y, plustegn, 2 over 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles over 3 gallons

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_OverEndFrac.

 0 $\frac{1}{2}$ 1 over 2, end fraction 1 over 2, end fraction 1 $\frac{12}{32}$ 12 over 32, end fraction 12 over 32, end fraction 2 $\frac{2+3}{13}$ 2 plus 3 over 13, end fraction 2 plustegn 3 over 13, end fraction 3 $\frac{x+y}{2}$ x plus y over 2, end fraction x plustegn y over 2, end fraction 4 $\frac{x+y}{x-y}$ x plus y over x minus y, end fraction x plustegn y over x minustegn y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, end fraction, plus, 2 over 3, end fraction x plustegn y over x minustegn y, end fraction, plustegn, 2 over 3, end fraction 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons, end fraction miles over gallons, end fraction 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons, end fraction 2 miles over 3 gallons, end fraction

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_GeneralEndFrac.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2, end fraction the fraction with numerator 1, and denominator 2, end fraction 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32, end fraction the fraction with numerator 12, and denominator 32, end fraction 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction the fraction with numerator 2 plustegn 3, and denominator 13, end fraction 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction the fraction with numerator x plustegn y, and denominator 2, end fraction 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction the fraction with numerator x plustegn y, and denominator x minustegn y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus, the fraction with numerator 2, and denominator 3, end fraction the fraction with numerator x plustegn y, and denominator x minustegn y, end fraction, plustegn, the fraction with numerator 2, and denominator 3, end fraction 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon, end fraction the fraction with numerator miles, and denominator gallon, end fraction

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_General.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2 the fraction with numerator 1, and denominator 2 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32 the fraction with numerator 12, and denominator 32 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 the fraction with numerator 2 plustegn 3, and denominator 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 the fraction with numerator x plustegn y, and denominator 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y the fraction with numerator x plustegn y, and denominator x minustegn y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus, the fraction with numerator 2, and denominator 3 the fraction with numerator x plustegn y, and denominator x minustegn y, plustegn, the fraction with numerator 2, and denominator 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon the fraction with numerator miles, and denominator gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction with numerator 2 miles, and denominator 3 gallons the fraction with numerator 2 miles, and denominator 3 gallons

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_FracOver.

 0 $\frac{1}{2}$ the fraction 1 over 2 the fraction 1 over 2 1 $\frac{12}{32}$ the fraction 12 over 32 the fraction 12 over 32 2 $\frac{2+3}{13}$ the fraction 2 plus 3 over 13 the fraction 2 plustegn 3 over 13 3 $\frac{x+y}{2}$ the fraction x plus y over 2 the fraction x plustegn y over 2 4 $\frac{x+y}{x-y}$ the fraction x plus y over x minus y the fraction x plustegn y over x minustegn y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction x plus y over x minus y, plus, the fraction 2 over 3 the fraction x plustegn y over x minustegn y, plustegn, the fraction 2 over 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction miles over gallon the fraction miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction 2 miles over 3 gallons the fraction 2 miles over 3 gallons

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Per.

 0 $\frac{1}{2}$ 1 per 2 1 per 2 1 $\frac{12}{32}$ 12 per 32 12 per 32 2 $\frac{2+3}{13}$ 2 plus 3 per 13 2 plustegn 3 per 13 3 $\frac{x+y}{2}$ x plus y per 2 x plustegn y per 2 4 $\frac{x+y}{x-y}$ x plus y per x minus y x plustegn y per x minustegn y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y per x minus y, plus, 2 per 3 x plustegn y per x minustegn y, plustegn, 2 per 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles per gallon miles per gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles per 3 gallons 2 miles per 3 gallons

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Ordinal.

 0 $\frac{1}{2}$ one half en halve 1 $\frac{12}{32}$ twelve thirty seconds tolv toogtredvtedele 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 the fraction with numerator 2 plustegn 3, and denominator 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 the fraction with numerator x plustegn y, and denominator 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y the fraction with numerator x plustegn y, and denominator x minustegn y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds the fraction with numerator x plustegn y, and denominator x minustegn y, plustegn to tredjedele 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles over gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles over 3 gallons

## Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_EndFrac.

 0 $\frac{1}{2}$ one half en halve 1 $\frac{12}{32}$ 12 over 32, end fraction 12 over 32, end fraction 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction the fraction with numerator 2 plustegn 3, and denominator 13, end fraction 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction the fraction with numerator x plustegn y, and denominator 2, end fraction 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction the fraction with numerator x plustegn y, and denominator x minustegn y, end fraction 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirds the fraction with numerator x plustegn y, and denominator x minustegn y, end fraction, plustegn to tredjedele 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons miles over gallons 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles over 3 gallons 8 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third en halve over en tredjedel 9 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third, end fraction the fraction with numerator 1, and denominator, 2 over en tredjedel, end fraction 10 $\frac{\frac{1}{2}}{3}$ one half over 3, end fraction en halve over 3, end fraction 11 $\frac{1}{\frac{2}{3}}$ 1 over two thirds, end fraction 1 over to tredjedele, end fraction 12 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction 13 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction 14 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2, end fraction the fraction with numerator 1 plustegn, 4 over x, and denominator 2, end fraction 15 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x, end fraction the fraction with numerator 3, and denominator 2 plustegn, 4 over x, end fraction 16 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half, end fraction the fraction with numerator, 10 over 22, and denominator en halve, end fraction 17 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fraction the fraction with numerator 1 plustegn to tredjedele, and denominator 1 minustegn to tredjedele, end fraction 18 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fraction the fraction with numerator 1 plustegn, x over 2, and denominator 1 minustegn, x over 2, end fraction 19 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fraction the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 1, plustegn 1, and denominator x plustegn 1, end fraction 20 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fraction the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 4, plustegn en halve, and denominator x plustegn, 1 over 16, end fraction 21 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction 1 plustegn, the fraction with numerator x, and denominator 1 plustegn, 2 over x, end fraction 22 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction 1 plustegn, the fraction with numerator x plustegn 3, and denominator 1 plustegn, the fraction with numerator 2, and denominator x plustegn 3, end fraction 23 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn 1, end fraction 24 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn tre prikker, end fraction 25 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fraction a sub 0, plustegn, the fraction with numerator 1, and denominator, a sub 1, plustegn, the fraction with numerator 1, and denominator, a sub 2, plustegn, the fraction with numerator 1, and denominator, a sub 3, plustegn tre prikker, end fraction

## Danish Clearspeak Functions rule tests. Locale: da, Style: Functions_Auto.

 0 $f\left(x\right)$ f of x f of x 1 $g\left(x\right)$ g of x g of x 2 $h\left(x\right)$ h of x h of x 3 $f\left(2x\right)$ f of 2 x f of 2 x 4 $g\left(-2x\right)$ g of negative 2 x g of negative 2 x 5 $h\left(\frac{1}{2}\right)$ h of one half h of en halve 6 $f\left(x+1\right)=f\left(x\right)+1$ f of, open paren, x plus 1, close paren, equals f of x, plus 1 f of, venstre parantes, x plustegn 1, højre parantes, lig med f of x, plustegn 1 7 $g\left(2x+1\right)$ g of, open paren, 2 x, plus 1, close paren g of, venstre parantes, 2 x, plustegn 1, højre parantes 8 $g\left({x}^{2}\right)$ g of, open paren, x squared, close paren g of, venstre parantes, x squared, højre parantes 9 ${f}^{-1}\left(x\right)$ f inverse of x f inverse of x 10 ${g}^{-1}\left(x\right)$ g inverse of x g inverse of x 11 ${h}^{-1}\left(x\right)$ h inverse of x h inverse of x 12 ${f}^{-1}\left(2x\right)$ f inverse of 2 x f inverse of 2 x 13 ${g}^{-1}\left(-2x\right)$ g inverse of negative 2 x g inverse of negative 2 x 14 ${f}^{-1}\left(3x-1\right)$ f inverse of, open paren, 3 x, minus 1, close paren f inverse of, venstre parantes, 3 x, minustegn 1, højre parantes 15 ${g}^{-1}\left({x}^{2}\right)$ g inverse of, open paren, x squared, close paren g inverse of, venstre parantes, x squared, højre parantes 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of one half h inverse of en halve 17 ${f}^{-1}\left(f\left(x\right)\right)$ f inverse of, f of x f inverse of, f of x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g inverse of, g of x g inverse of, g of x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h inverse of, h of x h inverse of, h of x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f inverse of, f of 2 x f inverse of, f of 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g inverse of, g of negative 2 x g inverse of, g of negative 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, h of one half h inverse of, h of en halve 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1 f inverse of, venstre parantes, f of, venstre parantes, x plustegn 1, højre parantes, højre parantes, lig med x plustegn 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close paren g inverse of, venstre parantes, g of, venstre parantes, 2 x, plustegn 1, højre parantes, højre parantes 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g inverse of, open paren, g of, open paren, x squared, close paren, close paren g inverse of, venstre parantes, g of, venstre parantes, x squared, højre parantes, højre parantes 26 $f\left({f}^{-1}\left(x\right)\right)$ f of, f inverse of x f of, f inverse of x 27 $g\left({g}^{-1}\left(x\right)\right)$ g of, g inverse of x g of, g inverse of x 28 $h\left({h}^{-1}\left(x\right)\right)$ h of, h inverse of x h of, h inverse of x 29 $f\left({f}^{-1}\left(2x\right)\right)$ f of, f inverse of 2 x f of, f inverse of 2 x 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g of, g inverse of negative 2 x g of, g inverse of negative 2 x 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close paren f of, venstre parantes, f inverse of, venstre parantes, 3 x, minustegn 1, højre parantes, højre parantes 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g of, g inverse of, open paren, x squared, close paren g of, g inverse of, venstre parantes, x squared, højre parantes 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of one half h of, h inverse of en halve 34 $f\left(g\left(x\right)\right)$ f of, g of x f of, g of x 35 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren f of, venstre parantes, g of, venstre parantes, x plustegn 1, højre parantes, højre parantes 36 $h\left(g\left(x\right)\right)$ h of, g of x h of, g of x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren h of, venstre parantes, g of, venstre parantes, the fraction with numerator x, and denominator x plustegn 1, højre parantes, højre parantes 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, of x, equals f of x, plus g of x venstre parantes, f plustegn g, højre parantes, of x, lig med f of x, plustegn g of x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close paren venstre parantes, f plustegn g, højre parantes, of, venstre parantes, x plustegn 1, højre parantes, lig med f of, venstre parantes, x plustegn 1, højre parantes, plustegn g of, venstre parantes, x plustegn 1, højre parantes 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, of x venstre parantes, f prik g, højre parantes, of x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, of, open paren, 2 x, plus 5, close paren venstre parantes, f prik g, højre parantes, of, venstre parantes, 2 x, plustegn 5, højre parantes 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, of x, equals, f of x, over g of x venstre parantes, f over g, højre parantes, of x, lig med, f of x, over g of x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close paren venstre parantes, f over g, højre parantes, of, venstre parantes, 2 x, plustegn 5, højre parantes, lig med, the fraction with numerator f of, venstre parantes, 2 x, plustegn 5, højre parantes, and denominator g of, venstre parantes, 2 x, plustegn 5, højre parantes 44 $\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, equals f of, g of x venstre parantes, f komposition stjerne g, højre parantes, of x, lig med f of, g of x 45 $2f\left(x\right)$ 2 f of x 2 f of x 46 $cf\left(x\right)$ c f of x c f of x 47 ${f}^{2}\left(x\right)$ f squared of x f squared of x 48 ${f}^{2}\left(2x+1\right)$ f squared of, open paren, 2 x, plus 1, close paren f squared of, venstre parantes, 2 x, plustegn 1, højre parantes 49 ${f}^{3}\left(x\right)$ f cubed of x f cubed of x 50 ${f}^{3}\left(2x+1\right)$ f cubed of, open paren, 2 x, plus 1, close paren f cubed of, venstre parantes, 2 x, plustegn 1, højre parantes 51 ${f}^{4}\left(x\right)$ the fourth power of, f of x the fjerde power of, f of x 52 ${f}^{4}\left(2x+1\right)$ the fourth power of, f of, open paren, 2 x, plus 1, close paren the fjerde power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes 53 ${f}^{5}\left(x\right)$ the fifth power of, f of x the femte power of, f of x 54 ${f}^{5}\left(2x+1\right)$ the fifth power of, f of, open paren, 2 x, plus 1, close paren the femte power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes 55 ${f}^{n}\left(x\right)$ the n-th power of, f of x the n-th power of, f of x 56 ${f}^{n}\left(2x+1\right)$ the n-th power of, f of, open paren, 2 x, plus 1, close paren the n-th power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes 57 ${g}^{2}\left(x\right)$ g squared of x g squared of x 58 ${g}^{2}\left(2x+1\right)$ g squared of, open paren, 2 x, plus 1, close paren g squared of, venstre parantes, 2 x, plustegn 1, højre parantes 59 ${h}^{3}\left(x\right)$ h cubed of x h cubed of x 60 ${h}^{3}\left(2x+1\right)$ h cubed of, open paren, 2 x, plus 1, close paren h cubed of, venstre parantes, 2 x, plustegn 1, højre parantes 61 ${g}^{4}\left(x\right)$ the fourth power of, g of x the fjerde power of, g of x 62 ${g}^{4}\left(2x+1\right)$ the fourth power of, g of, open paren, 2 x, plus 1, close paren the fjerde power of, g of, venstre parantes, 2 x, plustegn 1, højre parantes 63 ${h}^{5}\left(x\right)$ the fifth power of, h of x the femte power of, h of x 64 ${h}^{5}\left(2x+1\right)$ the fifth power of, h of, open paren, 2 x, plus 1, close paren the femte power of, h of, venstre parantes, 2 x, plustegn 1, højre parantes 65 ${g}^{n}\left(x\right)$ the n-th power of, g of x the n-th power of, g of x 66 ${g}^{n}\left(2x+1\right)$ the n-th power of, g of, open paren, 2 x, plus 1, close paren the n-th power of, g of, venstre parantes, 2 x, plustegn 1, højre parantes 67 ${f}_{1}\left(x\right)$ f sub 1, of x f sub 1, of x 68 ${g}_{2}\left({x}^{3}\right)$ g sub 2, of, open paren, x cubed, close paren g sub 2, of, venstre parantes, x cubed, højre parantes 69 ${h}_{n}\left(3x-2\right)$ h sub n, of, open paren, 3 x, minus 2, close paren h sub n, of, venstre parantes, 3 x, minustegn 2, højre parantes 70 ${f}_{1}^{-1}\left(x\right)$ f sub 1, inverse of x f sub 1, inverse of x 71 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, inverse of, open paren, 2 x, plus 1, close paren g sub 2, inverse of, venstre parantes, 2 x, plustegn 1, højre parantes 72 ${h}_{n}^{-1}\left(x\right)$ h sub n, inverse of x h sub n, inverse of x 73 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, inverse of, g sub 2, of x g sub 1, inverse of, g sub 2, of x 74 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, of, g sub 2, inverse of x f sub 1, of, g sub 2, inverse of x 75 $f\left(x,y\right)$ f of, open paren, x comma y, close paren f of, venstre parantes, x komma y, højre parantes 76 $f\left(x,y,z\right)$ f of, open paren, x comma y comma z, close paren f of, venstre parantes, x komma y komma z, højre parantes 77 $f\left(x+1,2y\right)$ f of, open paren, x plus 1, comma, 2 y, close paren f of, venstre parantes, x plustegn 1, komma, 2 y, højre parantes 78 $f\left(2x,x+1,{x}^{2}\right)$ f of, open paren, 2 x, comma, x plus 1, comma, x squared, close paren f of, venstre parantes, 2 x, komma, x plustegn 1, komma, x squared, højre parantes

## Danish Clearspeak Functions rule tests. Locale: da, Style: Fraction_Over.

 0 $h\left(\frac{1}{2}\right)$ h of, open paren, 1 over 2, close paren h of, venstre parantes, 1 over 2, højre parantes 1 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of, open paren, 1 over 2, close paren h inverse of, venstre parantes, 1 over 2, højre parantes 2 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, open paren, h of, open paren, 1 over 2, close paren, close paren h inverse of, venstre parantes, h of, venstre parantes, 1 over 2, højre parantes, højre parantes

## Danish Clearspeak Functions rule tests. Locale: da, Style: Fraction_FracOver.

 0 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of, open paren, the fraction 1 over 2, close paren h of, h inverse of, venstre parantes, the fraction 1 over 2, højre parantes

## Danish Clearspeak Functions rule tests. Locale: da, Style: Functions_None.

 0 $f\left(x\right)$ f times x f times x 1 $g\left(x\right)$ g times x g times x 2 $h\left(x\right)$ h times x h times x 3 $f\left(2x\right)$ f times 2 x f times 2 x 4 $g\left(-2x\right)$ g times negative 2 x g times negative 2 x 5 $h\left(\frac{1}{2}\right)$ h times one half h times en halve 6 $f\left(x+1\right)=f\left(x\right)+1$ f times, open paren, x plus 1, close paren, equals, f times x, plus 1 f times, venstre parantes, x plustegn 1, højre parantes, lig med, f times x, plustegn 1 7 $g\left(2x+1\right)$ g times, open paren, 2 x, plus 1, close paren g times, venstre parantes, 2 x, plustegn 1, højre parantes 8 $g\left({x}^{2}\right)$ g times, open paren, x squared, close paren g times, venstre parantes, x squared, højre parantes 9 ${f}^{-1}\left(x\right)$ f to the negative 1 power, times x f to the negative 1 power, times x 10 ${g}^{-1}\left(x\right)$ g to the negative 1 power, times x g to the negative 1 power, times x 11 ${h}^{-1}\left(x\right)$ h to the negative 1 power, times x h to the negative 1 power, times x 12 ${f}^{-1}\left(2x\right)$ f to the negative 1 power, times 2 x f to the negative 1 power, times 2 x 13 ${g}^{-1}\left(-2x\right)$ g to the negative 1 power, times negative 2 x g to the negative 1 power, times negative 2 x 14 ${f}^{-1}\left(3x-1\right)$ f to the negative 1 power, times, open paren, 3 x, minus 1, close paren f to the negative 1 power, times, venstre parantes, 3 x, minustegn 1, højre parantes 15 ${g}^{-1}\left({x}^{2}\right)$ g to the negative 1 power, times, open paren, x squared, close paren g to the negative 1 power, times, venstre parantes, x squared, højre parantes 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h to the negative 1 power, times one half h to the negative 1 power, times en halve 17 ${f}^{-1}\left(f\left(x\right)\right)$ f to the negative 1 power, times, f times x f to the negative 1 power, times, f times x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g to the negative 1 power, times, g times x g to the negative 1 power, times, g times x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h to the negative 1 power, times, h times x h to the negative 1 power, times, h times x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f to the negative 1 power, times, f times 2 x f to the negative 1 power, times, f times 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g to the negative 1 power, times, g times negative 2 x g to the negative 1 power, times, g times negative 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h to the negative 1 power, times, h times one half h to the negative 1 power, times, h times en halve 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1 f to the negative 1 power, times, venstre parantes, f times, venstre parantes, x plustegn 1, højre parantes, højre parantes, lig med x plustegn 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close paren g to the negative 1 power, times, venstre parantes, g times, venstre parantes, 2 x, plustegn 1, højre parantes, højre parantes 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close paren g to the negative 1 power, times, venstre parantes, g times, venstre parantes, x squared, højre parantes, højre parantes 26 $f\left({f}^{-1}\left(x\right)\right)$ f times, open paren, f to the negative 1 power, times x, close paren f times, venstre parantes, f to the negative 1 power, times x, højre parantes 27 $g\left({g}^{-1}\left(x\right)\right)$ g times, open paren, g to the negative 1 power, times x, close paren g times, venstre parantes, g to the negative 1 power, times x, højre parantes 28 $h\left({h}^{-1}\left(x\right)\right)$ h times, open paren, h to the negative 1 power, times x, close paren h times, venstre parantes, h to the negative 1 power, times x, højre parantes 29 $f\left({f}^{-1}\left(2x\right)\right)$ f times, open paren, f to the negative 1 power, times 2 x, close paren f times, venstre parantes, f to the negative 1 power, times 2 x, højre parantes 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g times, open paren, g to the negative 1 power, times negative 2 x, close paren g times, venstre parantes, g to the negative 1 power, times negative 2 x, højre parantes 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close paren f times, venstre parantes, f to the negative 1 power, times, venstre parantes, 3 x, minustegn 1, højre parantes, højre parantes 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close paren g times, venstre parantes, g to the negative 1 power, times, venstre parantes, x squared, højre parantes, højre parantes 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h times, open paren, h to the negative 1 power, times one half, close paren h times, venstre parantes, h to the negative 1 power, times en halve, højre parantes 34 $f\left(g\left(x\right)\right)$ f times, g times x f times, g times x 35 $f\left(g\left(x+1\right)\right)$ f times, open paren, g times, open paren, x plus 1, close paren, close paren f times, venstre parantes, g times, venstre parantes, x plustegn 1, højre parantes, højre parantes 36 $h\left(g\left(x\right)\right)$ h times, g times x h times, g times x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren h times, venstre parantes, g times, venstre parantes, the fraction with numerator x, and denominator x plustegn 1, højre parantes, højre parantes 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, times x, equals, f times x, plus, g times x venstre parantes, f plustegn g, højre parantes, times x, lig med, f times x, plustegn, g times x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close paren venstre parantes, f plustegn g, højre parantes, times, venstre parantes, x plustegn 1, højre parantes, lig med, f times, venstre parantes, x plustegn 1, højre parantes, plustegn, g times, venstre parantes, x plustegn 1, højre parantes 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, times x venstre parantes, f prik g, højre parantes, times x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, times, open paren, 2 x, plus 5, close paren venstre parantes, f prik g, højre parantes, times, venstre parantes, 2 x, plustegn 5, højre parantes 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times x venstre parantes, f over g, højre parantes, times x, lig med, the fraction with numerator, f times x, and denominator, g times x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close paren venstre parantes, f over g, højre parantes, times, venstre parantes, 2 x, plustegn 5, højre parantes, lig med, the fraction with numerator, f times, venstre parantes, 2 x, plustegn 5, højre parantes, and denominator, g times, venstre parantes, 2 x, plustegn 5, højre parantes 44 $2f\left(x\right)$ 2, f times x 2, f times x 45 $cf\left(x\right)$ c, f times x c, f times x 46 ${f}^{2}\left(x\right)$ f squared times x f squared times x 47 ${f}^{2}\left(2x+1\right)$ f squared times, open paren, 2 x, plus 1, close paren f squared times, venstre parantes, 2 x, plustegn 1, højre parantes 48 ${f}^{3}\left(x\right)$ f cubed times x f cubed times x 49 ${f}^{3}\left(2x+1\right)$ f cubed times, open paren, 2 x, plus 1, close paren f cubed times, venstre parantes, 2 x, plustegn 1, højre parantes 50 ${f}^{4}\left(x\right)$ f to the fourth power, times x f to the fjerde power, times x 51 ${f}^{4}\left(2x+1\right)$ f to the fourth power, times, open paren, 2 x, plus 1, close paren f to the fjerde power, times, venstre parantes, 2 x, plustegn 1, højre parantes 52 ${f}^{5}\left(x\right)$ f to the fifth power, times x f to the femte power, times x 53 ${f}^{5}\left(2x+1\right)$ f to the fifth power, times, open paren, 2 x, plus 1, close paren f to the femte power, times, venstre parantes, 2 x, plustegn 1, højre parantes 54 ${f}^{n}\left(x\right)$ f to the n-th power, times x f to the n-th power, times x 55 ${f}^{n}\left(2x+1\right)$ f to the n-th power, times, open paren, 2 x, plus 1, close paren f to the n-th power, times, venstre parantes, 2 x, plustegn 1, højre parantes 56 ${g}^{2}\left(x\right)$ g squared times x g squared times x 57 ${g}^{2}\left(2x+1\right)$ g squared times, open paren, 2 x, plus 1, close paren g squared times, venstre parantes, 2 x, plustegn 1, højre parantes 58 ${h}^{3}\left(x\right)$ h cubed times x h cubed times x 59 ${h}^{3}\left(2x+1\right)$ h cubed times, open paren, 2 x, plus 1, close paren h cubed times, venstre parantes, 2 x, plustegn 1, højre parantes 60 ${g}^{4}\left(x\right)$ g to the fourth power, times x g to the fjerde power, times x 61 ${g}^{4}\left(2x+1\right)$ g to the fourth power, times, open paren, 2 x, plus 1, close paren g to the fjerde power, times, venstre parantes, 2 x, plustegn 1, højre parantes 62 ${h}^{5}\left(x\right)$ h to the fifth power, times x h to the femte power, times x 63 ${h}^{5}\left(2x+1\right)$ h to the fifth power, times, open paren, 2 x, plus 1, close paren h to the femte power, times, venstre parantes, 2 x, plustegn 1, højre parantes 64 ${g}^{n}\left(x\right)$ g to the n-th power, times x g to the n-th power, times x 65 ${g}^{n}\left(2x+1\right)$ g to the n-th power, times, open paren, 2 x, plus 1, close paren g to the n-th power, times, venstre parantes, 2 x, plustegn 1, højre parantes 66 ${f}_{1}\left(x\right)$ f sub 1, times x f sub 1, times x 67 ${g}_{2}\left({x}^{3}\right)$ g sub 2, times, open paren, x cubed, close paren g sub 2, times, venstre parantes, x cubed, højre parantes 68 ${h}_{n}\left(3x-2\right)$ h sub n, times, open paren, 3 x, minus 2, close paren h sub n, times, venstre parantes, 3 x, minustegn 2, højre parantes 69 ${f}_{1}^{-1}\left(x\right)$ f sub 1, to the negative 1 power, times x f sub 1, to the negative 1 power, times x 70 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close paren g sub 2, to the negative 1 power, times, venstre parantes, 2 x, plustegn 1, højre parantes 71 ${h}_{n}^{-1}\left(x\right)$ h sub n, to the negative 1 power, times x h sub n, to the negative 1 power, times x 72 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close paren g sub 1, to the negative 1 power, times, venstre parantes, g sub 2, times x, højre parantes 73 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close paren f sub 1, times, venstre parantes, g sub 2, to the negative 1 power, times x, højre parantes 74 $f\left(x,y\right)$ f times, open paren, x comma y, close paren f times, venstre parantes, x komma y, højre parantes 75 $f\left(x,y,z\right)$ f times, open paren, x comma y comma z, close paren f times, venstre parantes, x komma y komma z, højre parantes 76 $f\left(x+1,2y\right)$ f times, open paren, x plus 1, comma, 2 y, close paren f times, venstre parantes, x plustegn 1, komma, 2 y, højre parantes 77 $f\left(2x,x+1,{x}^{2}\right)$ f times, open paren, 2 x, comma, x plus 1, comma, x squared, close paren f times, venstre parantes, 2 x, komma, x plustegn 1, komma, x squared, højre parantes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto.

 0 $2\left(3\right)$ 2 times 3 2 3 1 $2\left[3\right]$ 2 times 3 2 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 2 to the fjerde power, 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 2 , venstre parantes, 3 plustegn 4, højre parantes 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 2 , kantet venstreparentes, 3 plustegn 4, kantet højreparentes 5 $\left(3\right)\left(2\right)$ 3 times 2 3 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 2 , venstre parantes, 3 plustegn 4, højre parantes, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren venstre parantes, 2 plustegn 7, højre parantes, , venstre parantes, 3 minustegn 6, højre parantes 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket kantet venstreparentes, 2 plustegn 7, kantet højreparentes, , kantet venstreparentes, 3 minustegn 6, kantet højreparentes 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren x , venstre parantes, y plustegn z, højre parantes 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 2 , venstre parantes, y plustegn 1, højre parantes 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x venstre parantes, 2 minustegn 1, højre parantes, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren p sub 1, , venstre parantes, 3 plustegn 7, højre parantes 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power venstre parantes, x plustegn y, højre parantes, to the negative 4 power, , venstre parantes, x minustegn y, højre parantes, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 2 raised to the 4 , venstre parantes, x plustegn y, højre parantes, power 16 $xy$ x y x y 17 ${x}^{2}{y}^{3}$ x squared, y cubed x squared, y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power x raised to the y plustegn 1 power, x raised to the y plustegn 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b the square root of a, the square root of b, lig med the square root of a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 the square root of 3, the square root of 10, lig med the square root of 30 21 $2\sqrt{3}$ 2 the square root of 3 2 the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 1 plustegn 2 the square root of 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren f of x, lig med x squared , venstre parantes, x plustegn 1, højre parantes 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y sinus x cosinus y, plustegn, cosinus x sinus y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close paren the sinus of, venstre parantes, x plustegn y, højre parantes, the cosinus of, venstre parantes, x plustegn y, højre parantes 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y the logaritme base 10 of, x y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y the logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2 , venstre parantes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2 , kantet venstreparentes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes 31 $2|x|$ 2 times, the absolute value of x 2 , the absolute value of x 32 $|x||y|$ the absolute value of x, times, the absolute value of y the absolute value of x, , the absolute value of y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 the absolute value of x plustegn 1, , the absolute value of y minustegn 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1 the absolute value of x plustegn 1, , the absolute value of y, minustegn 1 35 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren A lig med h of, venstre parantes, the fraction with numerator, b sub 1, plustegn, b sub 2, and denominator 2, højre parantes 36 $a\left(0\right)=0\left(a\right)=0$ a of 0, equals 0 times a equals 0 a of 0, lig med 0 a lig med 0 37 $a\left(-1\right)=-a$ a of negative 1, equals negative a a of negative 1, lig med negative a 38 $B\left(2,6\right)$ B of, open paren, 2 comma 6, close paren B of, venstre parantes, 2 komma 6, højre parantes 39 $p\left(w\right)$ p of w p of w 40 $x\left(t\right)=2t+4$ x of t, equals 2 t, plus 4 x of t, lig med 2 t, plustegn 4 41 $k\left(x\right)=\left(x+3\right)\left(x-5\right)$ k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close paren k of x, lig med, venstre parantes, x plustegn 3, højre parantes, , venstre parantes, x minustegn 5, højre parantes 42 $T\left(t\right)={T}_{s}+\left({T}_{0}-{T}_{s}\right){e}^{-kt}$ T of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, power T of t, lig med, T sub s, plustegn, venstre parantes, T sub 0, minustegn, T sub s, højre parantes, e raised to the negative k t, power 43 $V=\mathcal{l}w\left(8\right)$ V equals script l, w of 8 V lig med håndskrift l, w of 8

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren f times x, lig med x squared , venstre parantes, x plustegn 1, højre parantes 1 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals, h times, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren A lig med, h times, venstre parantes, the fraction with numerator, b sub 1, plustegn, b sub 2, and denominator 2, højre parantes 2 $a\left(0\right)=0\left(a\right)=0$ a times 0, equals 0 times a equals 0 a times 0, lig med 0 a lig med 0 3 $a\left(-1\right)=-a$ a times negative 1, equals negative a a times negative 1, lig med negative a 4 $B\left(2,6\right)$ B times, open paren, 2 comma 6, close paren B times, venstre parantes, 2 komma 6, højre parantes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2 , venstre parantes, 3 , anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2 , kantet venstreparentes, 3 , venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value the absolute value of x plustegn 1, end absolute value, , the absolute value of y minustegn 1, end absolute value 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1 the absolute value of x plustegn 1, end absolute value, , the absolute value of y, end absolute value, minustegn 1

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes.

 0 $2\left(3\right)$ 2 times 3 2 3 1 $2\left[3\right]$ 2 times 3 2 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 2 to the fjerde power, 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 2 , venstre parantes, 3 plustegn 4, højre parantes 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 2 , kantet venstreparentes, 3 plustegn 4, kantet højreparentes 5 $\left(3\right)\left(2\right)$ 3 times 2 3 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 2 , venstre parantes, 3 plustegn 4, højre parantes, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren venstre parantes, 2 plustegn 7, højre parantes, , venstre parantes, 3 minustegn 6, højre parantes 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket kantet venstreparentes, 2 plustegn 7, kantet højreparentes, , kantet venstreparentes, 3 minustegn 6, kantet højreparentes 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren x , venstre parantes, y plustegn z, højre parantes 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 2 , venstre parantes, y plustegn 1, højre parantes 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x venstre parantes, 2 minustegn 1, højre parantes, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren p sub 1, , venstre parantes, 3 plustegn 7, højre parantes 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, power p sub 1, raised to the, a sub 1, power, , p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power venstre parantes, x plustegn y, højre parantes, to the negative 4 power, , venstre parantes, x minustegn y, højre parantes, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 2 raised to the 4 , venstre parantes, x plustegn y, højre parantes, power 16 $xy$ x times y x y 17 ${x}^{2}{y}^{3}$ x squared times y cubed x squared y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, times x raised to the y plus 2 power x raised to the y plustegn 1 power, x raised to the y plustegn 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, times the square root of b, equals the square root of a times b the square root of a, the square root of b, lig med the square root of a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, times the square root of 10, equals the square root of 30 the square root of 3, the square root of 10, lig med the square root of 30 21 $2\sqrt{3}$ 2 times the square root of 3 2 the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 times the square root of 3 1 plustegn 2 the square root of 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren f of x, lig med x squared , venstre parantes, x plustegn 1, højre parantes 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x, times cosine y plus cosine x, times sine y sinus x, cosinus y plustegn cosinus x, sinus y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close paren the sinus of, venstre parantes, x plustegn y, højre parantes, , the cosinus of, venstre parantes, x plustegn y, højre parantes 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x times y the logaritme base 10 of, x y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals log x, times log y the logaritme of, venstre parantes, x plustegn y, højre parantes, lig med logaritme x, logaritme y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2 , venstre parantes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2 , kantet venstreparentes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes 31 $2|x|$ 2 times, the absolute value of x 2 , the absolute value of x 32 $|x||y|$ the absolute value of x, times, the absolute value of y the absolute value of x, , the absolute value of y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 the absolute value of x plustegn 1, , the absolute value of y minustegn 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1 the absolute value of x plustegn 1, , the absolute value of y, minustegn 1

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimesAnd:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren f times x, lig med x squared , venstre parantes, x plustegn 1, højre parantes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2 , venstre parantes, 3 , anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2 , kantet venstreparentes, 3 , venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value the absolute value of x plustegn 1, end absolute value, , the absolute value of y minustegn 1, end absolute value 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1 the absolute value of x plustegn 1, end absolute value, , the absolute value of y, end absolute value, minustegn 1

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 2, venstre parantes, 3, højre parantes 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2, kantet venstreparentes, 3, kantet højreparentes 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 2 to the fjerde power, venstre parantes, 3, højre parantes 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 2, venstre parantes, 3 plustegn 4, højre parantes 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 2, kantet venstreparentes, 3 plustegn 4, kantet højreparentes 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren venstre parantes, 3, højre parantes, venstre parantes, 2, højre parantes 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 2, venstre parantes, 3 plustegn 4, højre parantes, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren venstre parantes, 2 plustegn 7, højre parantes, venstre parantes, 3 minustegn 6, højre parantes 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket kantet venstreparentes, 2 plustegn 7, kantet højreparentes, kantet venstreparentes, 3 minustegn 6, kantet højreparentes 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren x, venstre parantes, y plustegn z, højre parantes 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 2, venstre parantes, y plustegn 1, højre parantes 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x venstre parantes, 2 minustegn 1, højre parantes, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren p sub 1, venstre parantes, 3 plustegn 7, højre parantes 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power venstre parantes, x plustegn y, højre parantes, to the negative 4 power, venstre parantes, x minustegn y, højre parantes, to the negative 4 power 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 2 raised to the 4, venstre parantes, x plustegn y, højre parantes, power 16 $xy$ x y x y 17 ${x}^{2}{y}^{3}$ x squared y cubed x squared y cubed 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power x raised to the y plustegn 1 power, x raised to the y plustegn 2 power 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b the square root of a, the square root of b, lig med the square root of a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 the square root of 3, the square root of 10, lig med the square root of 30 21 $2\sqrt{3}$ 2 the square root of 3 2 the square root of 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 1 plustegn 2 the square root of 3 23 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y sinus x cosinus y, plustegn, cosinus x sinus y 24 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y the logaritme base 10 of, x y 25 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y the logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y 26 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 27 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2, venstre parantes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes 28 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2, kantet venstreparentes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes 29 $2|x|$ 2, the absolute value of x 2, the absolute value of x 30 $|x||y|$ the absolute value of x, the absolute value of y the absolute value of x, the absolute value of y 31 $|x+1||y-1|$ the absolute value of x plus 1, the absolute value of y minus 1 the absolute value of x plustegn 1, the absolute value of y minustegn 1 32 $|x+1||y|-1$ the absolute value of x plus 1, the absolute value of y, minus 1 the absolute value of x plustegn 1, the absolute value of y, minustegn 1 33 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren f of x, lig med x squared, venstre parantes, x plustegn 1, højre parantes 34 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y the logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Functions_Auto.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren f of x, lig med x squared, venstre parantes, x plustegn 1, højre parantes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2, venstre parantes, 3, anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2, kantet venstreparentes, 3, venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes 2 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2, venstre parantes, 3, anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes 3 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2, kantet venstreparentes, 3, venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

## Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Paren_Silent.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 2, venstre parantes, 3, højre parantes 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2, kantet venstreparentes, 3, kantet højreparentes 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 2 to the fjerde power, venstre parantes, 3, højre parantes 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 2, venstre parantes, 3 plustegn 4, højre parantes 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 2, kantet venstreparentes, 3 plustegn 4, kantet højreparentes 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren venstre parantes, 3, højre parantes, venstre parantes, 2, højre parantes 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 2, venstre parantes, 3 plustegn 4, højre parantes, squared 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren venstre parantes, 2 plustegn 7, højre parantes, venstre parantes, 3 minustegn 6, højre parantes 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket kantet venstreparentes, 2 plustegn 7, kantet højreparentes, kantet venstreparentes, 3 minustegn 6, kantet højreparentes 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren x, venstre parantes, y plustegn z, højre parantes 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 2, venstre parantes, y plustegn 1, højre parantes 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x venstre parantes, 2 minustegn 1, højre parantes, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren p sub 1, venstre parantes, 3 plustegn 7, højre parantes 13 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power venstre parantes, x plustegn y, højre parantes, to the negative 4 power, venstre parantes, x minustegn y, højre parantes, to the negative 4 power 14 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 2 raised to the 4, venstre parantes, x plustegn y, højre parantes, power 15 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 16 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2, venstre parantes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes 17 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2, kantet venstreparentes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes

## Danish Clearspeak Logarithms rule tests. Locale: da, Style: Log_Auto.

 0 $\mathrm{log}x$ log x logaritme x 1 ${\mathrm{log}}_{10}x$ the log base 10 of, x the logaritme base 10 of, x 2 ${\mathrm{log}}_{b}ax={\mathrm{log}}_{b}a+{\mathrm{log}}_{b}x$ the log base b of, a x, equals, the log base b of, a, plus, the log base b of, x the logaritme base b of, a x, lig med, the logaritme base b of, a, plustegn, the logaritme base b of, x 3 ${\mathrm{log}}_{b}\frac{S}{T}={\mathrm{log}}_{b}S-{\mathrm{log}}_{b}T$ the log base b of, S over T, equals, the log base b of, S, minus, the log base b of, T the logaritme base b of, S over T, lig med, the logaritme base b of, S, minustegn, the logaritme base b of, T 4 ${\mathrm{log}}_{b}\left({x}^{k}\right)=k{\mathrm{log}}_{b}x$ the log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, x the logaritme base b of, venstre parantes, x to the k-th power, højre parantes, lig med k, the logaritme base b of, x 5 ${10}^{{\mathrm{log}}_{10}x}=x$ 10 raised to the log base 10 of, x, power, equals x 10 raised to the logaritme base 10 of, x, power, lig med x 6 ${\mathrm{log}}_{10}{10}^{x}=x$ the log base 10 of, 10 to the x-th power, equals x the logaritme base 10 of, 10 to the x-th power, lig med x 7 ${10}^{{\mathrm{log}}_{10}5}=5$ 10 raised to the log base 10 of, 5, power, equals 5 10 raised to the logaritme base 10 of, 5, power, lig med 5 8 ${\mathrm{log}}_{10}{10}^{3}=3$ the log base 10 of, 10 cubed, equals 3 the logaritme base 10 of, 10 cubed, lig med 3 9 ${\mathrm{log}}_{a}x=\frac{{\mathrm{log}}_{b}x}{{\mathrm{log}}_{b}a}$ the log base a of, x, equals, the log base b of, x, over, the log base b of, a the logaritme base a of, x, lig med, the logaritme base b of, x, over, the logaritme base b of, a 10 $\frac{{\mathrm{log}}_{10}18}{{\mathrm{log}}_{10}3}={\mathrm{log}}_{3}18$ the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18 the logaritme base 10 of, 18, over, the logaritme base 10 of, 3, lig med, the logaritme base 3 of, 18 11 $\frac{\mathrm{log}x}{\mathrm{log}a}$ log x over log a logaritme x over logaritme a 12 $\mathrm{log}\left(x+1\right)$ the log of, open paren, x plus 1, close paren the logaritme of, venstre parantes, x plustegn 1, højre parantes 13 $\mathrm{log}{\left(x+1\right)}^{2}$ the log of, open paren, x plus 1, close paren, squared the logaritme of, venstre parantes, x plustegn 1, højre parantes, squared 14 $\mathrm{log}\left(xy\right)$ log x y logaritme x y 15 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}\left(x+2\right)}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close paren the fraction with numerator, the logaritme of, venstre parantes, x plustegn 1, højre parantes, and denominator, the logaritme of, venstre parantes, x plustegn 2, højre parantes 16 $\frac{{\mathrm{log}}_{6}\left(x+1\right)}{{\mathrm{log}}_{6}\left(x+2\right)}$ the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close paren the fraction with numerator, the logaritme base 6 of, venstre parantes, x plustegn 1, højre parantes, and denominator, the logaritme base 6 of, venstre parantes, x plustegn 2, højre parantes 17 $\frac{\mathrm{log}40+\mathrm{log}60}{\mathrm{log}5}$ the fraction with numerator log 40 plus log 60, and denominator log 5 the fraction with numerator logaritme 40 plustegn logaritme 60, and denominator logaritme 5 18 $\frac{{\mathrm{log}}_{3}40+{\mathrm{log}}_{3}60}{{\mathrm{log}}_{3}5}$ the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5 the fraction with numerator, the logaritme base 3 of, 40, plustegn, the logaritme base 3 of, 60, and denominator, the logaritme base 3 of, 5 19 $\mathrm{log}\left({3}^{4}{12}^{9}\right)=4\mathrm{log}3+9\mathrm{log}12$ the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12 the logaritme of, venstre parantes, 3 to the fjerde power, 12 to the niende power, højre parantes, lig med 4 logaritme 3, plustegn 9 logaritme 12 20 $\mathrm{log}\left(\frac{x}{y}\right)$ the log of, open paren, x over y, close paren the logaritme of, venstre parantes, x over y, højre parantes 21 $\mathrm{log}\left(\frac{{3}^{4}}{{8}^{10}}\right)=4\mathrm{log}3-10\mathrm{log}8$ the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8 the logaritme of, venstre parantes, the fraction with numerator 3 to the fjerde power, and denominator 8 to the tiende power, højre parantes, lig med 4 logaritme 3, minustegn 10 logaritme 8 22 ${10}^{\mathrm{log}x}$ 10 raised to the log x power 10 raised to the logaritme x power 23 $\mathrm{ln}x$ l n x naturlig logaritme x 24 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close paren naturlig logaritme x, minustegn naturlig logaritme of, venstre parantes, x minustegn 1, højre parantes, lig med naturlig logaritme of, venstre parantes, the fraction with numerator x, and denominator x minustegn 1, højre parantes 25 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x 26 ${e}^{\mathrm{ln}x}=x$ e raised to the l n x power, equals x e raised to the naturlig logaritme x power, lig med x 27 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x 28 ${e}^{\mathrm{ln}4}=4$ e raised to the l n 4 power, equals 4 e raised to the naturlig logaritme 4 power, lig med 4 29 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ l n 40, over l n 5, equals, the log base 5 of, 40 naturlig logaritme 40, over naturlig logaritme 5, lig med, the logaritme base 5 of, 40 30 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator l n 40, plus l n 60, and denominator l n 5 the fraction with numerator naturlig logaritme 40, plustegn naturlig logaritme 60, and denominator naturlig logaritme 5

## Danish Clearspeak Logarithms rule tests. Locale: da, Style: Log_LnAsNaturalLog.

 0 $\mathrm{ln}x$ natural log x naturlig logaritme x 1 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ natural log x, minus, the natural log of, open paren, x minus 1, close paren, equals, the natural log of, open paren, the fraction with numerator x, and denominator x minus 1, close paren naturlig logaritme x, minustegn, the naturlig logaritme of, venstre parantes, x minustegn 1, højre parantes, lig med, the naturlig logaritme of, venstre parantes, the fraction with numerator x, and denominator x minustegn 1, højre parantes 2 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x the naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x 3 ${e}^{\mathrm{ln}x}=x$ e raised to the natural log x power, equals x e raised to the naturlig logaritme x power, lig med x 4 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x the naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x 5 ${e}^{\mathrm{ln}4}=4$ e raised to the natural log 4 power, equals 4 e raised to the naturlig logaritme 4 power, lig med 4 6 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ natural log 40, over natural log 5, equals, the log base 5 of, 40 naturlig logaritme 40, over naturlig logaritme 5, lig med, the logaritme base 5 of, 40 7 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator natural log 40, plus natural log 60, and denominator natural log 5 the fraction with numerator naturlig logaritme 40, plustegn naturlig logaritme 60, and denominator naturlig logaritme 5

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Auto.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 the 3 by 1 column matrix. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 the 3 by 1 column matrix. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 the 1 by 2 row matrix. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 the 1 by 2 row matrix. 3, 5 8 $\begin{array}{c}\left(3\right)\end{array}$ the 1 by 1 matrix with entry 3 the 1 by 1 matrix with entry 3 9 $\left(\begin{array}{c}3\end{array}\right)$ the 1 by 1 matrix with entry 3 the 1 by 1 matrix with entry 3 10 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 the 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1 11 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 12 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x the 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x 13 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 14 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 15 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 16 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 17 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 18 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 19 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 20 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 21 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 22 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel 23 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 24 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 25 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 26 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 27 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 28 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 29 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 30 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 31 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 32 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 33 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 34 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 35 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 36 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 37 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 38 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 39 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel 40 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_SpeakColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 the 1 by 2 row matrix. Column 1: 3 Column 2: 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 the 1 by 2 row matrix. Column 1: 3 Column 2: 5 8 $\left(\begin{array}{cccc}1& 2& 3& 4\end{array}\right)$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 9 $\left[\begin{array}{cccc}1& 2& 3& 4\end{array}\right]$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 10 $\left(\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right)$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 11 $\left[\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right]$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 12 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 the 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1 13 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 14 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x the 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x 15 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 16 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 17 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 18 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 19 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 20 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 21 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 22 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 23 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele 24 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel 25 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2 the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2 26 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 3 the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 27 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 28 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 29 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 30 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 31 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 32 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 33 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 34 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 35 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 36 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x 37 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 38 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 39 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele 40 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele 41 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth the determinant of the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel 42 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth the determinant of the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_SilentColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 the 3 by 1 column matrix. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 the 3 by 1 column matrix. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 the 1 by 2 row matrix. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 the 1 by 2 row matrix. 3, 5 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. x plus 1, x minus 1 the 2 by 1 column matrix. x plustegn 1, x minustegn 1 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. 3, 6, 1, 2 the 4 by 1 column matrix. 3, 6, 1, 2 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. x plus 1, 2 x the 1 by 2 row matrix. x plustegn 1, 2 x 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. 3, 6, 1, 2 the 1 by 4 row matrix. 3, 6, 1, 2 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0 the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 the 2 by 3 matrix. Row 1: 3, 1 minustegn x, 4 Row 2: 0, 2, 6 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. the 2 by 3 matrix. Row 1: 3, 1 minustegn x, 4 Row 2: 0, 2, 6 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_EndMatrix.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3. end matrix the 3 by 1 column matrix. 1, 2, 3. end matrix 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3. end matrix the 3 by 1 column matrix. 1, 2, 3. end matrix 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5. end matrix the 1 by 2 row matrix. 3, 5. end matrix 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5. end matrix the 1 by 2 row matrix. 3, 5. end matrix 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrix the 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1. end matrix 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrix the 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x. end matrix 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end matrix 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end matrix 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 3 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinant the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end determinant 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end matrix 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinant the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end determinant 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end matrix 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinant the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end determinant 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix the determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Vector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3 the 3 by 1 column vector. 1, 2, 3 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3 the 3 by 1 column vector. 1, 2, 3 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5 the 1 by 2 row vector. 3, 5 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5 the 1 by 2 row vector. 3, 5 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1 the 2 by 1 column vector. Row 1: x plustegn 1 Row 2: x minustegn 1 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x the 1 by 2 row vector. Column 1: x plustegn 1 Column 2: 2 x 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4 the 1 by 2 row vector. 3, 2. the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2 the 1 by 3 row vector. 1, 2, 7. the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. times the 2 by 1 column vector. 3, 2 the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. the 2 by 1 column vector. 3, 2 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. times the 3 by 1 column vector. 1, 2, 7 the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. the 3 by 1 column vector. 1, 2, 7

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_EndVector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3. end vector the 3 by 1 column vector. 1, 2, 3. end vector 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3. end vector the 3 by 1 column vector. 1, 2, 3. end vector 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5. end vector the 1 by 2 row vector. 3, 5. end vector 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5. end vector the 1 by 2 row vector. 3, 5. end vector 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1. end vector the 2 by 1 column vector. Row 1: x plustegn 1 Row 2: x minustegn 1. end vector 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vector the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vector 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x. end vector the 1 by 2 row vector. Column 1: x plustegn 1 Column 2: 2 x. end vector 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. end vector times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix the 1 by 2 row vector. 3, 2. end vector the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. end vector times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix the 1 by 3 row vector. 1, 2, 7. end vector the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix times the 2 by 1 column vector. 3, 2. end vector the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix the 2 by 1 column vector. 3, 2. end vector 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix times the 3 by 1 column vector. 1, 2, 7. end vector the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix the 3 by 1 column vector. 1, 2, 7. end vector

## Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Combinatoric.

 0 $\left(\begin{array}{c}n\\ r\end{array}\right)$ n choose r n choose r 1 $\left(\begin{array}{c}10\\ 7\end{array}\right)$ 10 choose 7 10 choose 7 2 $\left(\begin{array}{c}15\\ 0\end{array}\right)$ 15 choose 0 15 choose 0 3 $\left(\begin{array}{c}8\\ 3\end{array}\right)$ 8 choose 3 8 choose 3

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 lines, Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 2 lines, Line 1: x; plustegn; y; lig med; 7. Line 2: 2 x; plustegn; 3 y; lig med; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 2 lines, Line 1: Equation 1 kolon x plustegn y lig med 7. Line 2: Equation 2 kolon 2 x, plustegn 3 y, lig med 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 2 lines, Line 1: Equation 1 kolon; x plustegn y lig med 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y, lig med 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 2 lines, Line 1: Equation 1 kolon; x plustegn y; lig med; 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y; lig med; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ 3 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 3 lines, Line 1: 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: 3 x, plustegn 2 y, plustegn 5 z, lig med 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 3 lines, Line 1: 4 x; plustegn; 3 y; plustegn; 2 z; lig med; 1. Line 2: 2 x; plustegn; 4 y; plustegn; 6 z; lig med; 6. Line 3: 3 x; plustegn; 2 y; plustegn; 5 z; lig med; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ 3 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 3 lines, Line 1: Equation 1 kolon 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: Equation 2 kolon 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: Equation 3 kolon 3 x, plustegn 2 y, plustegn 5 z, lig med 1 9 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 30 3 lines, Line 1: x større end eller lig med 0. Line 2: y større end eller lig med 0. Line 3: 3 x, minustegn 5 y, mindre end eller lig med 30 10 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x 4 lines, Line 1: 3 x, plustegn 8 lig med 5 x. Line 2: 8 lig med 5 x, minustegn 3 x. Line 3: 8 lig med 2 x. Line 4: 4 lig med x 11 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank 4 lines, Line 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Line 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Line 3: blank; blank; 8; lig med; 2 x; blank; blank. Line 4: blank; blank; 4; lig med; x; blank; blank 12 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ 4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x 4 lines, Line 1: Step 1 kolon 3 x, plustegn 8 lig med 5 x. Line 2: Step 2 kolon 8 lig med 5 x, minustegn 3 x. Line 3: Step 3 kolon 8 lig med 2 x. Line 4: Step 4 kolon 4 lig med x 13 f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0 14 f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Case.

 0 f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0 1 f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0 2 2 cases, Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0 2 cases, Case 1: f of x, lig med negative x; if x mindre end 0. Case 2: f of x, lig med x; if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Equation.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 equations, Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17 2 equations, Equation 1: x plustegn y lig med 7. Equation 2: 2 x, plustegn 3 y, lig med 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y; equals; 7. Equation 2: 2 x, plus 3 y; equals; 17 2 equations, Equation 1: x plustegn y; lig med; 7. Equation 2: 2 x, plustegn 3 y; lig med; 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLinePausesBetweenColumns_Auto:MultiLineOverview_Auto:MultiLineLabel_Line.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Line.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 lines, Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Row.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 rows, Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17 2 rows, Row 1: x plustegn y lig med 7. Row 2: 2 x, plustegn 3 y, lig med 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y; equals; 7. Row 2: 2 x, plus 3 y; equals; 17 2 rows, Row 1: x plustegn y; lig med; 7. Row 2: 2 x, plustegn 3 y; lig med; 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Step.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 steps, Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x 4 steps, Step 1: 3 x, plustegn 8 lig med 5 x. Step 2: 8 lig med 5 x, minustegn 3 x. Step 3: 8 lig med 2 x. Step 4: 4 lig med x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank 4 steps, Step 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Step 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Step 3: blank; blank; 8; lig med; 2 x; blank; blank. Step 4: blank; blank; 4; lig med; x; blank; blank

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Constraint.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 constraints, Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30 3 constraints, Constraint 1: x større end eller lig med 0. Constraint 2: y større end eller lig med 0. Constraint 3: 3 x, minustegn 5 y, mindre end eller lig med 30

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_None.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, x is greater than or equal to 0. y is greater than or equal to 0. 3 x, minus 5 y, is less than or equal to 30 3 lines, x større end eller lig med 0. y større end eller lig med 0. 3 x, minustegn 5 y, mindre end eller lig med 30 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, 3 x; plus; 8; equals; 5 x; blank; blank. blank; blank; 8; equals; 5 x; minus; 3 x. blank; blank; 8; equals; 2 x; blank; blank. blank; blank; 4; equals; x; blank; blank 4 lines, 3 x; plustegn; 8; lig med; 5 x; blank; blank. blank; blank; 8; lig med; 5 x; minustegn; 3 x. blank; blank; 8; lig med; 2 x; blank; blank. blank; blank; 4; lig med; x; blank; blank 2 f of x, equals, 2 cases, negative x if x is less than 0. x if x is greater than or equal to 0 f of x, lig med, 2 cases, negative x if x mindre end 0. x if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17 2 lines, Line 1: x plustegn y. lig med. 7. Line 2: 2 x, plustegn 3 y. lig med. 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x. plus. y. equals. 7. Line 2: 2 x. plus. 3 y. equals. 17 2 lines, Line 1: x. plustegn. y. lig med. 7. Line 2: 2 x. plustegn. 3 y. lig med. 17 3 $\begin{array}{cc}\text{Equation 1:}& \text{}\text{}x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon. x plus y equals 7. Line 2: Equation 2 colon. 2 x, plus 3 y, equals 17 2 lines, Line 1: Equation 1 kolon. x plustegn y lig med 7. Line 2: Equation 2 kolon. 2 x, plustegn 3 y, lig med 17 4 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon. x plus y. equals. 7. Line 2: Equation 2 colon. 2 x, plus 3 y. equals. 17 2 lines, Line 1: Equation 1 kolon. x plustegn y. lig med. 7. Line 2: Equation 2 kolon. 2 x, plustegn 3 y. lig med. 17 5 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x. plus. 3 y. plus. 2 z. equals. 1. Line 2: 2 x. plus. 4 y. plus. 6 z. equals. 6. Line 3: 3 x. plus. 2 y. plus. 5 z. equals. 1 3 lines, Line 1: 4 x. plustegn. 3 y. plustegn. 2 z. lig med. 1. Line 2: 2 x. plustegn. 4 y. plustegn. 6 z. lig med. 6. Line 3: 3 x. plustegn. 2 y. plustegn. 5 z. lig med. 1 6 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x. plus. 8. equals. 5 x. blank. blank. Line 2: blank. blank. 8. equals. 5 x. minus. 3 x. Line 3: blank. blank. 8. equals. 2 x. blank. blank. Line 4: blank. blank. 4. equals. x. blank. blank 4 lines, Line 1: 3 x. plustegn. 8. lig med. 5 x. blank. blank. Line 2: blank. blank. 8. lig med. 5 x. minustegn. 3 x. Line 3: blank. blank. 8. lig med. 2 x. blank. blank. Line 4: blank. blank. 4. lig med. x. blank. blank 7 f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x. if x mindre end 0. Case 2: x. if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x. if x mindre end 0. Case 2: x. if x større end eller lig med 0 1 2 cases, Case 1: f of x, equals negative x. if x is less than 0. Case 2: f of x, equals x. if x is greater than or equal to 0 2 cases, Case 1: f of x, lig med negative x. if x mindre end 0. Case 2: f of x, lig med x. if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y. equals. 7. Equation 2: 2 x, plus 3 y. equals. 17 2 equations, Equation 1: x plustegn y. lig med. 7. Equation 2: 2 x, plustegn 3 y. lig med. 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17 2 lines, Line 1: x plustegn y. lig med. 7. Line 2: 2 x, plustegn 3 y. lig med. 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y. equals. 7. Row 2: 2 x, plus 3 y. equals. 17 2 rows, Row 1: x plustegn y. lig med. 7. Row 2: 2 x, plustegn 3 y. lig med. 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x. plus. 8. equals. 5 x. blank. blank. Step 2: blank. blank. 8. equals. 5 x. minus. 3 x. Step 3: blank. blank. 8. equals. 2 x. blank. blank. Step 4: blank. blank. 4. equals. x. blank. blank 4 steps, Step 1: 3 x. plustegn. 8. lig med. 5 x. blank. blank. Step 2: blank. blank. 8. lig med. 5 x. minustegn. 3 x. Step 3: blank. blank. 8. lig med. 2 x. blank. blank. Step 4: blank. blank. 4. lig med. x. blank. blank

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 2 lines, Line 1: x plustegn y, lig med, 7. Line 2: 2 x, plustegn 3 y, lig med, 17 1 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 17 2 lines, Line 1: x, plustegn, y, lig med, 7. Line 2: 2 x, plustegn, 3 y, lig med, 17 2 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 17 2 lines, Line 1: Equation 1 kolon, x plustegn y lig med 7. Line 2: Equation 2 kolon, 2 x, plustegn 3 y, lig med 17 3 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 17 2 lines, Line 1: Equation 1 kolon, x plustegn y, lig med, 7. Line 2: Equation 2 kolon, 2 x, plustegn 3 y, lig med, 17 4 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 1 3 lines, Line 1: 4 x, plustegn, 3 y, plustegn, 2 z, lig med, 1. Line 2: 2 x, plustegn, 4 y, plustegn, 6 z, lig med, 6. Line 3: 3 x, plustegn, 2 y, plustegn, 5 z, lig med, 1 5 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank 4 lines, Line 1: 3 x, plustegn, 8, lig med, 5 x, blank, blank. Line 2: blank, blank, 8, lig med, 5 x, minustegn, 3 x. Line 3: blank, blank, 8, lig med, 2 x, blank, blank. Line 4: blank, blank, 4, lig med, x, blank, blank 6 f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x, if x mindre end 0. Case 2: x, if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 f of x, lig med, 2 cases, Case 1: negative x, if x mindre end 0. Case 2: x, if x større end eller lig med 0 1 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0 2 cases, Case 1: f of x, lig med negative x, if x mindre end 0. Case 2: f of x, lig med x, if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y, equals, 7. Equation 2: 2 x, plus 3 y, equals, 17 2 equations, Equation 1: x plustegn y, lig med, 7. Equation 2: 2 x, plustegn 3 y, lig med, 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 2 lines, Line 1: x plustegn y, lig med, 7. Line 2: 2 x, plustegn 3 y, lig med, 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y, equals, 7. Row 2: 2 x, plus 3 y, equals, 17 2 rows, Row 1: x plustegn y, lig med, 7. Row 2: 2 x, plustegn 3 y, lig med, 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x, plus, 8, equals, 5 x, blank, blank. Step 2: blank, blank, 8, equals, 5 x, minus, 3 x. Step 3: blank, blank, 8, equals, 2 x, blank, blank. Step 4: blank, blank, 4, equals, x, blank, blank 4 steps, Step 1: 3 x, plustegn, 8, lig med, 5 x, blank, blank. Step 2: blank, blank, 8, lig med, 5 x, minustegn, 3 x. Step 3: blank, blank, 8, lig med, 2 x, blank, blank. Step 4: blank, blank, 4, lig med, x, blank, blank

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineOverview_None.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 Line 1: x; plustegn; y; lig med; 7. Line 2: 2 x; plustegn; 3 y; lig med; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 Line 1: Equation 1 kolon x plustegn y lig med 7. Line 2: Equation 2 kolon 2 x, plustegn 3 y, lig med 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 Line 1: Equation 1 kolon; x plustegn y lig med 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y, lig med 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 Line 1: Equation 1 kolon; x plustegn y; lig med; 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y; lig med; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 Line 1: 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: 3 x, plustegn 2 y, plustegn 5 z, lig med 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 Line 1: 4 x; plustegn; 3 y; plustegn; 2 z; lig med; 1. Line 2: 2 x; plustegn; 4 y; plustegn; 6 z; lig med; 6. Line 3: 3 x; plustegn; 2 y; plustegn; 5 z; lig med; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 Line 1: Equation 1 kolon 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: Equation 2 kolon 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: Equation 3 kolon 3 x, plustegn 2 y, plustegn 5 z, lig med 1 9 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x Line 1: Step 1 kolon 3 x, plustegn 8 lig med 5 x. Line 2: Step 2 kolon 8 lig med 5 x, minustegn 3 x. Line 3: Step 3 kolon 8 lig med 2 x. Line 4: Step 4 kolon 4 lig med x 10 f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f of x, lig med, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0 11 f of x, equals, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f of x, lig med, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f of x, lig med, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0 1 Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0 Case 1: f of x, lig med negative x; if x mindre end 0. Case 2: f of x, lig med x; if x større end eller lig med 0

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17 Equation 1: x plustegn y lig med 7. Equation 2: 2 x, plustegn 3 y, lig med 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17 Row 1: x plustegn y lig med 7. Row 2: 2 x, plustegn 3 y, lig med 17

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x Step 1: 3 x, plustegn 8 lig med 5 x. Step 2: 8 lig med 5 x, minustegn 3 x. Step 3: 8 lig med 2 x. Step 4: 4 lig med x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank Step 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Step 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Step 3: blank; blank; 8; lig med; 2 x; blank; blank. Step 4: blank; blank; 4; lig med; x; blank; blank

## Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Constraint:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30 Constraint 1: x større end eller lig med 0. Constraint 2: y større end eller lig med 0. Constraint 3: 3 x, minustegn 5 y, mindre end eller lig med 30

## Danish Clearspeak NamedSets rule tests. Locale: da, Style: Verbose.

 0 $ℝ$ the real numbers the real numbers 1 $\mathbb{R}$ the real numbers the real numbers 2 $ℂ$ the complex numbers the complex numbers 3 $\mathbb{C}$ the complex numbers the complex numbers 4 $ℤ$ the integers the integers 5 $\mathbb{Z}$ the integers the integers 6 $ℚ$ the rational numbers the rational numbers 7 $\mathbb{Q}$ the rational numbers the rational numbers 8 $ℕ$ the natural numbers the natural numbers 9 $\mathbb{N}$ the natural numbers the natural numbers 10 ${ℕ}_{0}$ the natural numbers with zero the natural numbers with zero 11 ${\mathbb{N}}_{0}$ the natural numbers with zero the natural numbers with zero 12 ${ℤ}^{+}$ the positive integers the positive integers 13 ${\mathbb{Z}}^{+}$ the positive integers the positive integers 14 ${ℤ}^{-}$ the negative integers the negative integers 15 ${\mathbb{Z}}^{-}$ the negative integers the negative integers 16 ${ℝ}^{2}$ r-two r-to 17 ${\mathbb{R}}^{2}$ r-two r-to 18 ${ℤ}^{3}$ z-three z-tre 19 ${\mathbb{Z}}^{3}$ z-three z-tre 20 ${ℂ}^{n}$ c-n c-n 21 ${\mathbb{C}}^{n}$ c-n c-n 22 ${ℝ}^{\infty }$ r-infinity r-uendelig 23 ${\mathbb{R}}^{\infty }$ r-infinity r-uendelig

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Auto.

 0 $\left(25\right)$ 25 25 1 $\left(2x\right)$ 2 x 2 x 2 $2+\left(-2\right)$ 2 plus negative 2 2 plustegn negative 2 3 $2-\left(-2\right)$ 2 minus negative 2 2 minustegn negative 2 4 $2--2$ 2 minus negative 2 2 minustegn negative 2 5 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 2 minustegn, venstre parantes, negative 2, højre parantes, cubed 6 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared venstre parantes, 2 x, højre parantes, squared 7 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power venstre parantes, 2 x, højre parantes, raised to the y plustegn 1 power 8 $\left(-2x\right)$ negative 2 x negative 2 x 9 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared venstre parantes, negative 2 x, højre parantes, squared 10 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared negative, venstre parantes, 2 x, højre parantes, squared 11 $\left(\frac{1}{2}\right)$ one half en halve 12 $\left(\frac{3}{4}x\right)$ three fourths x tre fjerdedele x 13 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren venstre parantes, 11 over 22, højre parantes 14 ${\left(\frac{1}{2}\right)}^{4}$ one half to the fourth power en halve to the fjerde power 15 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared venstre parantes, 11 over 15, højre parantes, squared

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Speak.

 0 $\left(25\right)$ open paren, 25, close paren venstre parantes, 25, højre parantes 1 $\left(2x\right)$ open paren, 2 x, close paren venstre parantes, 2 x, højre parantes 2 $2+\left(-2\right)$ 2 plus, open paren, negative 2, close paren 2 plustegn, venstre parantes, negative 2, højre parantes 3 $2-\left(-2\right)$ 2 minus, open paren, negative 2, close paren 2 minustegn, venstre parantes, negative 2, højre parantes 4 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 2 minustegn, venstre parantes, negative 2, højre parantes, cubed 5 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared venstre parantes, 2 x, højre parantes, squared 6 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power venstre parantes, 2 x, højre parantes, raised to the y plustegn 1 power 7 $\left(-2x\right)$ open paren, negative 2 x, close paren venstre parantes, negative 2 x, højre parantes 8 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared venstre parantes, negative 2 x, højre parantes, squared 9 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared negative, venstre parantes, 2 x, højre parantes, squared 10 $\left(\frac{1}{2}\right)$ open paren, one half, close paren venstre parantes, en halve, højre parantes 11 $\left(\frac{3}{4}x\right)$ open paren, three fourths x, close paren venstre parantes, tre fjerdedele x, højre parantes 12 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren venstre parantes, 11 over 22, højre parantes 13 ${\left(\frac{1}{2}\right)}^{4}$ open paren, one half, close paren, to the fourth power venstre parantes, en halve, højre parantes, to the fjerde power 14 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared venstre parantes, 11 over 15, højre parantes, squared

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_CoordPoint.

 0 $\left(1,2\right)$ the point with coordinates 1 comma 2 the point with coordinates 1 komma 2 1 $\left(x,y\right)$ the point with coordinates x comma y the point with coordinates x komma y 2 $\left(1,2,3\right)$ the point with coordinates 1 comma 2 comma 3 the point with coordinates 1 komma 2 komma 3 3 $\left(x,y,z\right)$ the point with coordinates x comma y comma z the point with coordinates x komma y komma z 4 $\left(1,2,386\right)$ the point with coordinates 1 comma 2 comma 386 the point with coordinates 1 komma 2 komma 386

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Interval.

 0 $\left(a,\text{}b\right)$ the interval from a to b, not including a or b the interval from a to b, not including a or b 1 $\left(0,\text{}1\right)$ the interval from 0 to 1, not including 0 or 1 the interval from 0 to 1, not including 0 or 1 2 $\left[a,\text{}b\right)$ the interval from a to b, including a, but not including b the interval from a to b, including a, but not including b 3 $\left[0,\text{}1\right)$ the interval from 0 to 1, including 0, but not including 1 the interval from 0 to 1, including 0, but not including 1 4 $\left(a,\text{}b\right]$ the interval from a to b, not including a, but including b the interval from a to b, not including a, but including b 5 $\left(0,\text{}1\right]$ the interval from 0 to 1, not including 0, but including 1 the interval from 0 to 1, not including 0, but including 1 6 $\left[a,\text{}b\right]$ the interval from a to b, including a and b the interval from a to b, including a and b 7 $\left[0,\text{}1\right]$ the interval from 0 to 1, including 0 and 1 the interval from 0 to 1, including 0 and 1 8 $\left(-\infty ,\text{}b\right)$ the interval from negative infinity to b, not including b the interval from negative uendelig to b, not including b 9 $\left(-\infty ,\text{}1\right)$ the interval from negative infinity to 1, not including 1 the interval from negative uendelig to 1, not including 1 10 $\left(-\infty ,b\right]$ the interval from negative infinity to b, including b the interval from negative uendelig to b, including b 11 $\left(-\infty ,1\right]$ the interval from negative infinity to 1, including 1 the interval from negative uendelig to 1, including 1 12 $\left(a,\text{}\infty \right)$ the interval from a to infinity, not including a the interval from a to uendelig, not including a 13 $\left(1,\text{}\infty \right)$ the interval from 1 to infinity, not including 1 the interval from 1 to uendelig, not including 1 14 $\left[a,\infty \right)$ the interval from a to infinity, including a the interval from a to uendelig, including a 15 $\left[1,\infty \right)$ the interval from 1 to infinity, including 1 the interval from 1 to uendelig, including 1 16 $\left(-\infty ,\text{}\infty \right)$ the interval from negative infinity to infinity the interval from negative uendelig to uendelig 17 $\left(-\infty ,\text{}+\infty \right)$ the interval from negative infinity to positive infinity the interval from negative uendelig to positive uendelig

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_SpeakNestingLevel.

 0 $f\left(g\left(x\right)\right)$ f of, g of x f of, g of x 1 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren f of, venstre parantes, g of, venstre parantes, x plustegn 1, højre parantes, højre parantes 2 $6-\left[2-\left(3+5\right)\right]$ 6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket 6 minustegn, kantet venstreparentes, 2 minustegn, venstre parantes, 3 plustegn 5, højre parantes, kantet højreparentes 3 $6-\left(2-\left(3+5\right)\right)$ 6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren 6 minustegn, venstre parantes, 2 minustegn, anden venstre parantes, 3 plustegn 5, anden højre parantes, højre parantes 4 $4\left[x+3\left(2x+1\right)\right]$ 4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket 4 , kantet venstreparentes, x plustegn 3 , venstre parantes, 2 x, plustegn 1, højre parantes, kantet højreparentes 5 $4\left(x+3\left(2x+1\right)\right)$ 4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren 4 , venstre parantes, x plustegn 3 , anden venstre parantes, 2 x, plustegn 1, anden højre parantes, højre parantes 6 $1+\left(2+\left(3+7\right)-\left(2+8\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren 1 plustegn, venstre parantes, 2 plustegn, anden venstre parantes, 3 plustegn 7, anden højre parantes, minustegn, anden venstre parantes, 2 plustegn 8, anden højre parantes, højre parantes 7 $1+\left(2+\left(3-\left(4-5\right)\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren 1 plustegn, venstre parantes, 2 plustegn, anden venstre parantes, 3 minustegn, tredje venstre parantes, 4 minustegn 5, tredje højre parantes, anden højre parantes, højre parantes 8 $\left(\left(2+\left(3+4\right)+5\right)+6+\left(\left(7+\left(8+1\right)\right)+2\right)\right)$ open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close paren venstre parantes, anden venstre parantes, 2 plustegn, tredje venstre parantes, 3 plustegn 4, tredje højre parantes, plustegn 5, anden højre parantes, plustegn 6 plustegn, anden venstre parantes, tredje venstre parantes, 7 plustegn, fjerde venstre parantes, 8 plustegn 1, fjerde højre parantes, tredje højre parantes, plustegn 2, anden højre parantes, højre parantes

## Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Silent.

 0 $\left(25\right)$ 25 25 1 $\left(2x\right)$ 2 x 2 x 2 $2+\left(-2\right)$ 2 plus, negative 2 2 plustegn, negative 2 3 $2-\left(-2\right)$ 2 minus, negative 2 2 minustegn, negative 2 4 $2-{\left(-2\right)}^{3}$ 2 minus, negative 2, cubed 2 minustegn, negative 2, cubed 5 ${\left(2x\right)}^{2}$ 2 x, squared 2 x, squared 6 ${\left(2x\right)}^{y+1}$ 2 x, raised to the y plus 1 power 2 x, raised to the y plustegn 1 power 7 $\left(-2x\right)$ negative 2 x negative 2 x 8 ${\left(-2x\right)}^{2}$ negative 2 x, squared negative 2 x, squared 9 $-{\left(2x\right)}^{2}$ negative, 2 x, squared negative, 2 x, squared 10 $\left(\frac{1}{2}\right)$ one half en halve 11 $\left(\frac{3}{4}x\right)$ three fourths x tre fjerdedele x 12 $\left(\frac{11}{22}\right)$ 11 over 22 11 over 22 13 ${\left(\frac{1}{2}\right)}^{4}$ one half, to the fourth power en halve, to the fjerde power 14 ${\left(\frac{11}{15}\right)}^{2}$ 11 over 15, squared 11 over 15, squared

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_Auto.

 0 $6×8$ 6 times 8 6 krydsprodukt 8 1 $m×n$ m times n m krydsprodukt n 2 $3×3$ 3 times 3 3 krydsprodukt 3

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_By.

 0 $6×8$ 6 by 8 6 krydsprodukt 8 1 $m×n$ m by n m krydsprodukt n 2 $3×3$ 3 by 3 3 krydsprodukt 3

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_Cross.

 0 $u×v$ u cross v u krydsprodukt v

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolDot_Auto.

 0 $6\cdot 8$ 6 times 8 6 prik 8 1 $m\cdot n$ m times n m prik n 2 $3\cdot 3$ 3 times 3 3 prik 3

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolDot_Dot.

 0 $6\cdot 8$ 6 dot 8 6 prik 8 1 $m\cdot n$ m dot n m prik n 2 $3\cdot 3$ 3 dot 3 3 prik 3

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: TriangleSymbol_Auto.

 0 $\Delta ABC$ triangle A B C trekant A B C 1 $\Delta DEF$ triangle D E F trekant D E F

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: TriangleSymbol_Delta.

 0 $\Delta x$ Delta x Delta x 1 $f\left(x+\Delta x\right)$ f of, open paren, x plus Delta x, close paren f of, venstre parantes, x plustegn Delta x, højre parantes

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Ellipses_Auto.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma dot dot dot 1 komma 2 komma 3 komma prik prik prik 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma dot dot dot comma 20 1 komma 2 komma 3 komma prik prik prik komma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot prik prik prik komma, negative 2, komma, negative 1, komma 0 komma 1 komma 2 komma prik prik prik

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Ellipses_AndSoOn.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma and so on 1 komma 2 komma 3 komma and so on 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma and so on up to comma 20 1 komma 2 komma 3 komma and so on up to komma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot prik prik prik komma, negative 2, komma, negative 1, komma 0 komma 1 komma 2 komma prik prik prik

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Auto.

 0 $3|6$ 3 divides 6 3 divides 6 1 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0 the set of all x such that x større end 0 2 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 the set of all x such that, the absolute value of x, større end 2 3 $f\left(x\right){|}_{x=5}$ f of x, evaluated at x equals 5 f of x, evaluated at x lig med 5 4 ${x}^{2}+2x{|}_{x=2}$ x squared plus 2 x, evaluated at x equals 2 x squared plustegn 2 x, evaluated at x lig med 2 5 ${x}^{2}+x{|}_{0}^{1}$ x squared plus x, evaluated at 1, minus the same expression evaluated at 0 x squared plustegn x, evaluated at 1, minus the same expression evaluated at 0

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_SuchThat.

 0 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0 the set of all x such that x større end 0

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Divides.

 0 $3|6$ 3 divides 6 3 divides 6

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Given.

 0 $P\text{}\left(A|B\right)$ P of, open paren, A given B, close paren P of, venstre parantes, A given B, højre parantes

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Auto.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period If x is a member of the integers then 2 x, is an even number prik 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x in the integers such that x is greater than 5 the set of all x in the integers such that x større end 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers 3 plustegn 2 I, is not a member of the real numbers

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Member.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period If x is a member of the integers then 2 x, is an even number prik 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x member of the integers such that x is greater than 5 the set of all x member of the integers such that x større end 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers 3 plustegn 2 I, is not a member of the real numbers

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Element.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is an element of the integers then 2 x, is an even number period If x is an element of the integers then 2 x, is an even number prik 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x element of the integers such that x is greater than 5 the set of all x element of the integers such that x større end 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not an element of the real numbers 3 plustegn 2 I, is not an element of the real numbers

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Belongs.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period If x belongs to the integers then 2 x, is an even number prik 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 the set of all x belonging to the integers such that x større end 5 2 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers 3 plustegn 2 I, does not belong to the real numbers 3 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period If x belongs to the integers then 2 x, is an even number prik 4 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 the set of all x belonging to the integers such that x større end 5 5 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers 3 plustegn 2 I, does not belong to the real numbers

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Sets_woAll:SetMemberSymbol_Belongs.

 0 $\left\{x\in ℤ:2 the set of x belonging to the integers such that 2 is less than x is less than 7 the set of x belonging to the integers such that 2 mindre end x mindre end 7

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Sets_woAll:SetMemberSymbol_Member.

 0 $\left\{x\in ℤ|x>5\right\}$ the set of x member of the integers such that x is greater than 5 the set of x member of the integers such that x større end 5

## Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Verbose.

 0 $\sum _{n=1}^{10}n$ the sum from n equals 1 to 10 of n the sum from n lig med 1 to 10 of n 1 $\sum _{n=1}^{\infty }n$ the sum from n equals 1 to infinity of n the sum from n lig med 1 to uendelig of n 2 $\sum _{i\in {ℤ}^{+}}i$ the sum over i is a member of the positive integers, of i the sum over I is a member of the positive integers, of I 3 $\sum _{S}i$ the sum over S, of i the sum over S, of I 4 $\sum {a}_{i}$ the sum of, a sub i the sum of, a sub I 5 $\prod _{i=1}^{10}i$ the product from i equals 1 to 10 of i the produkt from I lig med 1 to 10 of I 6 $\prod _{i\in {ℤ}^{+}}\frac{i}{i+1}$ the product over i is a member of the positive integers, of, the fraction with numerator i, and denominator i plus 1 the produkt over I is a member of the positive integers, of, the fraction with numerator I, and denominator I plustegn 1 7 $\prod _{{ℤ}^{+}}\frac{i}{i+1}$ the product over the positive integers, of, the fraction with numerator i, and denominator i plus 1 the produkt over the positive integers, of, the fraction with numerator I, and denominator I plustegn 1 8 $\prod {a}_{i}$ the product of, a sub i the produkt of, a sub I 9 $\underset{i=1}{\overset{10}{\cap }}{S}_{i}$ the intersection from i equals 1 to 10 of, S sub i the snit from I lig med 1 to 10 of, S sub I 10 $\underset{i=1}{\overset{10}{\cup }}{S}_{i}$ the union from i equals 1 to 10 of, S sub i the forening from I lig med 1 to 10 of, S sub I 11 $\cap {S}_{i}$ the intersection of, S sub i the snit of, S sub I 12 $\cup {S}_{i}$ the union of, S sub i the forening of, S sub I 13 $\underset{C}{\cap }{S}_{i}$ the intersection over C, of, S sub i the snit over C, of, S sub I 14 $\underset{C}{\cup }{S}_{i}$ the union over C, of, S sub i the forening over C, of, S sub I 15 $\int f\left(x\right)\text{}dx$ the integral of f of x, d x the integral of f of x, d x 16 ${\int }_{0}^{1}f\left(x\right)\text{}dx$ the integral from 0 to 1 of f of x, d x the integral from 0 to 1 of f of x, d x 17 $\underset{ℝ}{\int }f\left(x\right)\text{}dx$ the integral over the real numbers, of f of x, d x the integral over the real numbers, of f of x, d x

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Auto.

 0 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A mærke, B mærke 1 ${A}^{″}{B}^{″}$ A double prime, B double prime A dobbelt mærke, B dobbelt mærke 2 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippel mærke, B trippel mærke 3 ${f}^{\prime }\left(x\right)$ f prime of x f mærke of x 4 ${f}^{″}\left(x\right)$ f double prime of x f dobbelt mærke of x 5 ${f}^{‴}\left(x\right)$ f triple prime of x f trippel mærke of x 6 ${1}^{\prime }$ 1 foot 1 fod 7 ${2}^{\prime }$ 2 feet 2 fod 8 ${1}^{″}$ 1 inch 1 tomme 9 ${2}^{″}$ 2 inches 2 tommer 10 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 16 fod, 10 tommer 11 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grader, 10 minutter 12 $x°{y}^{\prime }$ x degrees, y minutes x grader, y minutter 13 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grader, 10 minutter, 25 sekunder 14 $x°{y}^{\prime }{z}^{″}$ x degrees, y minutes, z seconds x grader, y minutter, z sekunder

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Angle.

 0 ${1}^{\prime }$ 1 minute 1 minut 1 ${x}^{\prime }$ x minutes x minutter 2 ${2}^{\prime }$ 2 minutes 2 minutter 3 ${1}^{″}$ 1 second 1 sekund 4 ${x}^{″}$ x seconds x sekunder 5 ${2}^{″}$ 2 seconds 2 sekunder 6 ${16}^{\prime }{10}^{″}$ 16 minutes, 10 seconds 16 minutter, 10 sekunder 7 ${x}^{\prime }{y}^{″}$ x minutes, y seconds x minutter, y sekunder 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grader, 10 minutter 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grader, 10 minutter, 25 sekunder 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A mærke, B mærke 11 ${A}^{″}{B}^{″}$ A double prime, B double prime A dobbelt mærke, B dobbelt mærke 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippel mærke, B trippel mærke 13 ${f}^{\prime }\left(x\right)$ f prime of x f mærke of x 14 ${f}^{″}\left(x\right)$ f double prime of x f dobbelt mærke of x 15 ${f}^{‴}\left(x\right)$ f triple prime of x f trippel mærke of x

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Length.

 0 ${1}^{\prime }$ 1 foot 1 fod 1 ${x}^{\prime }$ x feet x fod 2 ${2}^{\prime }$ 2 feet 2 fod 3 ${1}^{″}$ 1 inch 1 tomme 4 ${x}^{″}$ x inches x tommer 5 ${2}^{″}$ 2 inches 2 tommer 6 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 16 fod, 10 tommer 7 ${x}^{\prime }{y}^{″}$ x feet, y inches x fod, y tommer 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grader, 10 minutter 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grader, 10 minutter, 25 sekunder 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A mærke, B mærke 11 ${A}^{″}{B}^{″}$ A double prime, B double prime A dobbelt mærke, B dobbelt mærke 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippel mærke, B trippel mærke 13 ${f}^{\prime }\left(x\right)$ f prime of x f mærke of x 14 ${f}^{″}\left(x\right)$ f double prime of x f dobbelt mærke of x 15 ${f}^{‴}\left(x\right)$ f triple prime of x f trippel mærke of x

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: CombinationPermutation_Auto.

 0 ${}_{n}C_{r}$ n C r n C r 1 ${}_{n}P_{r}$ n P r n P r 2 ${}_{10}C_{3}$ 10 C 3 10 C 3 3 ${}_{10}P_{3}$ 10 P 3 10 P 3

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: CombinationPermutation_ChoosePermute.

 0 ${}_{n}C_{r}$ n choose r n choose r 1 ${}_{n}P_{r}$ n permute r n permute r 2 ${}_{10}C_{3}$ 10 choose 3 10 choose 3 3 ${}_{10}P_{3}$ 10 permute 3 10 permute 3

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Bar_Auto.

 0 $\overline{f}$ f bar f streg over 1 $\overline{f}\left(x\right)$ f bar of x f streg over of x 2 $\overline{{f}_{1}}$ f sub 1, bar f sub 1, streg over 3 $\overline{{f}_{1}}\left(x\right)$ f sub 1, bar of x f sub 1, streg over of x 4 $\overline{z}$ z bar z streg over 5 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 the repeating decimal 0 point followed by repeating digit 3 6 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 the repeating decimal 0 point followed by repeating digits 1 2 7 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 the repeating decimal 2 point followed by repeating digits 1 3 4 8 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 the repeating decimal point 1 3 followed by repeating digits 4 6 7 9 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 10 $z\text{}\overline{z}$ z, z bar z, z streg over 11 $\overline{CD}$ the line segment C D the line segment C D 12 $\overline{{C}^{\prime }{D}^{\prime }}$ the line segment C prime D prime the line segment C mærke D mærke 13 $\overline{{C}^{″}{D}^{″}}$ the line segment C double prime D double prime the line segment C dobbelt mærke D dobbelt mærke 14 $\overline{{C}^{‴}{D}^{‴}}$ the line segment C triple prime D triple prime the line segment C trippel mærke D trippel mærke 15 $\stackrel{\text{def}}{=}$ is defined to be is defined to be 16 $\left(f\circ g\right)\left(x\right)\stackrel{\text{def}}{=}f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, is defined to be, f of, g of x venstre parantes, f komposition stjerne g, højre parantes, of x, is defined to be, f of, g of x 17 $\stackrel{?}{=}$ equals sign with question mark over it lig med sign with spørgsmålstegn over it 18 $x+2\stackrel{?}{=}4$ x plus 2 equals sign with question mark over it 4 x plustegn 2 lig med sign with spørgsmålstegn over it 4

## Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Bar_Conjugate.

 0 $\overline{z}$ the complex conjugate of z the complex conjugate of z 1 $z\text{}\overline{z}$ z, the complex conjugate of z z, the complex conjugate of z 2 $\overline{3-2i}=3+2i$ the complex conjugate of 3 minus 2 i, equals 3 plus 2 i the complex conjugate of 3 minustegn 2 I, lig med 3 plustegn 2 I 3 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 the repeating decimal 0 point followed by repeating digit 3 4 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 the repeating decimal 0 point followed by repeating digits 1 2 5 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 the repeating decimal 2 point followed by repeating digits 1 3 4 6 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 the repeating decimal point 1 3 followed by repeating digits 4 6 7 7 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2

## Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_Auto.

 0 $\sqrt{2}$ the square root of 2 the square root of 2 1 $3+\sqrt{2}$ 3 plus the square root of 2 3 plustegn the square root of 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 plus minus the square root of 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 3 minus plus the square root of 2 4 $-\sqrt{2}$ the negative square root of 2 the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the square root of 2 3 minustegn the square root of 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 3 plustegn the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 3 minustegn the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 3 plustegn, venstre parantes, the negative square root of 2, højre parantes 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 3 minustegn, venstre parantes, the negative square root of 2, højre parantes 10 $\sqrt{x+1}$ the square root of x plus 1 the square root of x plustegn 1 11 $\sqrt{x}+1$ the square root of x, plus 1 the square root of x, plustegn 1 12 $-\sqrt{x}$ the negative square root of x the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, close paren, squared venstre parantes, the square root of x, højre parantes, squared 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, close paren, squared negative, venstre parantes, the square root of x, højre parantes, squared 15 ${\sqrt{x}}^{2}$ the square root of x, squared the square root of x, squared 16 $\sqrt{{x}^{2}}$ the square root of x squared the square root of x squared 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared the square root of x squared plustegn y squared 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared the square root of, x sub 1, squared plustegn, x sub 2, squared 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared the square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared 20 $\sqrt{\frac{1}{2}}$ the square root of one half the square root of en halve 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66 the square root of, 23 over 66 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 the square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a the fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, and denominator 2 a 24 $\sqrt[3]{y}$ the cube root of y the cube root of y 25 $\sqrt[4]{n}$ the fourth root of n the fjerde root of n 26 $\sqrt[5]{35}$ the fifth root of 35 the femte root of 35 27 $\sqrt[9]{146}$ the ninth root of 146 the niende root of 146 28 $\sqrt[n]{d}$ the n-th root of d the n-th root of d 29 $\sqrt[m]{243}$ the m-th root of 243 the m-th root of 243 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power the I-th root of 2 to the I-th power 31 $\sqrt[j]{125}$ the j-th root of 125 the j-th root of 125 32 $-\sqrt[3]{y}$ negative the cube root of y negative the cube root of y 33 $-\sqrt[4]{n}$ negative the fourth root of n negative the fjerde root of n

## Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_PosNegSqRoot.

 0 $\sqrt{2}$ the positive square root of 2 the positive square root of 2 1 $3+\sqrt{2}$ 3 plus the positive square root of 2 3 plustegn the positive square root of 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 plus minus the square root of 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 3 minus plus the square root of 2 4 $-\sqrt{2}$ the negative square root of 2 the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the positive square root of 2 3 minustegn the positive square root of 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 3 plustegn the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 3 minustegn the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 3 plustegn, venstre parantes, the negative square root of 2, højre parantes 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 3 minustegn, venstre parantes, the negative square root of 2, højre parantes 10 $\sqrt{x+1}$ the positive square root of x plus 1 the positive square root of x plustegn 1 11 $\sqrt{x}+1$ the positive square root of x, plus 1 the positive square root of x, plustegn 1 12 $-\sqrt{x}$ the negative square root of x the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, close paren, squared venstre parantes, the positive square root of x, højre parantes, squared 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, close paren, squared venstre parantes, the negative square root of x, højre parantes, squared 15 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the positive square root of x, close paren, squared negative, venstre parantes, the positive square root of x, højre parantes, squared 16 ${\sqrt{x}}^{2}$ the positive square root of x, squared the positive square root of x, squared 17 $\sqrt{{x}^{2}}$ the positive square root of x squared the positive square root of x squared 18 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared the positive square root of x squared plustegn y squared 19 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared the positive square root of, x sub 1, squared plustegn, x sub 2, squared 20 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared the positive square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared 21 $\sqrt{\frac{1}{2}}$ the positive square root of one half the positive square root of en halve 22 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66 the positive square root of, 23 over 66 23 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 the positive square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5 24 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a the fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, and denominator 2 a 25 $\sqrt[3]{y}$ the cube root of y the cube root of y 26 $\sqrt[4]{n}$ the fourth root of n the fjerde root of n 27 $\sqrt[5]{35}$ the fifth root of 35 the femte root of 35 28 $\sqrt[9]{146}$ the ninth root of 146 the niende root of 146 29 $\sqrt[n]{d}$ the n-th root of d the n-th root of d 30 $\sqrt[m]{243}$ the m-th root of 243 the m-th root of 243 31 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power the I-th root of 2 to the I-th power 32 $\sqrt[j]{125}$ the j-th root of 125 the j-th root of 125 33 $-\sqrt[3]{y}$ negative the cube root of y negative the cube root of y 34 $-\sqrt[4]{n}$ negative the fourth root of n negative the fjerde root of n

## Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_RootEnd.

 0 $\sqrt{2}$ the square root of 2, end root the square root of 2, end root 1 $3+\sqrt{2}$ 3 plus the square root of 2, end root 3 plustegn the square root of 2, end root 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 plus minus the square root of 2, end root 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 3 minus plus the square root of 2, end root 4 $-\sqrt{2}$ the negative square root of 2, end root the negative square root of 2, end root 5 $3-\sqrt{2}$ 3 minus the square root of 2, end root 3 minustegn the square root of 2, end root 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 3 plustegn the negative square root of 2, end root 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 3 minustegn the negative square root of 2, end root 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 3 plustegn, venstre parantes, the negative square root of 2, end root, højre parantes 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 3 minustegn, venstre parantes, the negative square root of 2, end root, højre parantes 10 $\sqrt{x+1}$ the square root of x plus 1, end root the square root of x plustegn 1, end root 11 $\sqrt{x}+1$ the square root of x, end root, plus 1 the square root of x, end root, plustegn 1 12 $-\sqrt{x}$ the negative square root of x, end root the negative square root of x, end root 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, end root, close paren, squared venstre parantes, the square root of x, end root, højre parantes, squared 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, end root, close paren, squared negative, venstre parantes, the square root of x, end root, højre parantes, squared 15 ${\sqrt{x}}^{2}$ the square root of x, end root, squared the square root of x, end root, squared 16 $\sqrt{{x}^{2}}$ the square root of x squared, end root the square root of x squared, end root 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared, end root the square root of x squared plustegn y squared, end root 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared, end root the square root of, x sub 1, squared plustegn, x sub 2, squared, end root 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root the square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared, end root 20 $\sqrt{\frac{1}{2}}$ the square root of one half, end root the square root of en halve, end root 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66, end root the square root of, 23 over 66, end root 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root the square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5, end root 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a the fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, end root, and denominator 2 a 24 $\sqrt[3]{y}$ the cube root of y, end root the cube root of y, end root 25 $\sqrt[4]{n}$ the fourth root of n, end root the fjerde root of n, end root 26 $\sqrt[5]{35}$ the fifth root of 35, end root the femte root of 35, end root 27 $\sqrt[9]{146}$ the ninth root of 146, end root the niende root of 146, end root 28 $\sqrt[n]{d}$ the n-th root of d, end root the n-th root of d, end root 29 $\sqrt[m]{243}$ the m-th root of 243, end root the m-th root of 243, end root 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root the I-th root of 2 to the I-th power, end root 31 $\sqrt[j]{125}$ the j-th root of 125, end root the j-th root of 125, end root 32 $-\sqrt[3]{y}$ negative the cube root of y, end root negative the cube root of y, end root 33 $-\sqrt[4]{n}$ negative the fourth root of n, end root negative the fjerde root of n, end root

## Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{2}$ the positive square root of 2, end root the positive square root of 2, end root 1 $3+\sqrt{2}$ 3 plus the positive square root of 2, end root 3 plustegn the positive square root of 2, end root 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 plus minus the square root of 2, end root 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 3 minus plus the square root of 2, end root 4 $-\sqrt{2}$ the negative square root of 2, end root the negative square root of 2, end root 5 $3-\sqrt{2}$ 3 minus the positive square root of 2, end root 3 minustegn the positive square root of 2, end root 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 3 plustegn the negative square root of 2, end root 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 3 minustegn the negative square root of 2, end root 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 3 plustegn, venstre parantes, the negative square root of 2, end root, højre parantes 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 3 minustegn, venstre parantes, the negative square root of 2, end root, højre parantes 10 $\sqrt{x+1}$ the positive square root of x plus 1, end root the positive square root of x plustegn 1, end root 11 $\sqrt{x}+1$ the positive square root of x, end root, plus 1 the positive square root of x, end root, plustegn 1 12 $-\sqrt{x}$ the negative square root of x, end root the negative square root of x, end root 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, end root, close paren, squared venstre parantes, the positive square root of x, end root, højre parantes, squared 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, end root, close paren, squared venstre parantes, the negative square root of x, end root, højre parantes, squared 15 ${\sqrt{x}}^{2}$ the positive square root of x, end root, squared the positive square root of x, end root, squared 16 $\sqrt{{x}^{2}}$ the positive square root of x squared, end root the positive square root of x squared, end root 17 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared, end root the positive square root of x squared plustegn y squared, end root 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared, end root the positive square root of, x sub 1, squared plustegn, x sub 2, squared, end root 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root the positive square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared, end root 20 $\sqrt{\frac{1}{2}}$ the positive square root of one half, end root the positive square root of en halve, end root 21 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66, end root the positive square root of, 23 over 66, end root 22 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root the positive square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5, end root 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a the fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, end root, and denominator 2 a 24 $\sqrt[3]{y}$ the cube root of y, end root the cube root of y, end root 25 $\sqrt[4]{n}$ the fourth root of n, end root the fjerde root of n, end root 26 $\sqrt[5]{35}$ the fifth root of 35, end root the femte root of 35, end root 27 $\sqrt[9]{146}$ the ninth root of 146, end root the niende root of 146, end root 28 $\sqrt[n]{d}$ the n-th root of d, end root the n-th root of d, end root 29 $\sqrt[m]{243}$ the m-th root of 243, end root the m-th root of 243, end root 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root the I-th root of 2 to the I-th power, end root 31 $\sqrt[j]{125}$ the j-th root of 125, end root the j-th root of 125, end root 32 $-\sqrt[3]{y}$ negative the cube root of y, end root negative the cube root of y, end root 33 $-\sqrt[4]{n}$ negative the fourth root of n, end root negative the fjerde root of n, end root

## Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_Auto.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 the set of all x in the integers such that 2 mindre end x mindre end 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 the set of all x such that, the absolute value of x, større end 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 the set of all x in the integers such that 2 mindre end x mindre end 7 3 the set of all x in the natural numbers such that x is an even number the set of all x in the natural numbers such that x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 the set 1 komma 2 komma 3 5 $\left\{1,112,\text{}1,253\right\}$ the set 1 comma 112 comma 1 comma 253 the set 1 komma 112 komma 1 komma 253

## Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_woAll.

 0 $\left\{x\in ℤ|2 the set of x in the integers such that 2 is less than x is less than 7 the set of x in the integers such that 2 mindre end x mindre end 7 1 $\left\{x||x|>2\right\}$ the set of x such that, the absolute value of x, is greater than 2 the set of x such that, the absolute value of x, større end 2 2 $\left\{x\in ℤ:2 the set of x in the integers such that 2 is less than x is less than 7 the set of x in the integers such that 2 mindre end x mindre end 7 3 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 the set 1 komma 2 komma 3 4 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ the set 1 comma 112 comma 1 comma 253 the set 1 komma 112 komma 1 komma 253

## Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_SilentBracket.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 the set of all x in the integers such that 2 mindre end x mindre end 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 the set of all x such that, the absolute value of x, større end 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 the set of all x in the integers such that 2 mindre end x mindre end 7 3 the set of all x in the natural numbers such that x is an even number the set of all x in the natural numbers such that x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ 1 comma 2 comma 3 1 komma 2 komma 3 5 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ 1 comma 112 comma 1 comma 253 1 komma 112 komma 1 komma 253

## Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_Auto.

 0 $\mathrm{sin}x$ sine x sinus x 1 $\mathrm{cos}x$ cosine x cosinus x 2 $\mathrm{tan}\theta$ tangent theta tangens theta 3 $\mathrm{sec}\theta$ secant theta secans theta 4 $\mathrm{csc}x$ cosecant x cosecans x 5 $\mathrm{cot}x$ cotangent x cotangens x 6 ${\mathrm{sin}}^{2}x$ sine squared x sinus squared x 7 ${\mathrm{cos}}^{3}x$ cosine cubed x cosinus cubed x 8 ${\mathrm{tan}}^{2}x$ tangent squared x tangens squared x 9 ${\mathrm{sec}}^{3}x$ secant cubed x secans cubed x 10 ${\mathrm{csc}}^{2}x$ cosecant squared x cosecans squared x 11 ${\mathrm{cot}}^{2}x$ cotangent squared x cotangens squared x 12 $\mathrm{sin}2\pi$ sine 2 pi sinus 2 pi 13 $\mathrm{sin}\left(\pi k+\frac{\pi }{2}\right)$ the sine of, open paren, pi k, plus, pi over 2, close paren the sinus of, venstre parantes, pi k, plustegn, pi over 2, højre parantes 14 $\mathrm{cos}\frac{\pi }{2}$ the cosine of, pi over 2 the cosinus of, pi over 2 15 $\mathrm{sin}\frac{\pi }{2}$ the sine of, pi over 2 the sinus of, pi over 2 16 $\frac{\mathrm{sin}\pi }{2}$ sine pi over 2 sinus pi over 2 17 $\frac{2}{\mathrm{sin}\pi }$ 2 over sine pi 2 over sinus pi 18 $\frac{\mathrm{sin}\frac{\pi }{2}}{3}$ the fraction with numerator, the sine of, pi over 2, and denominator 3 the fraction with numerator, the sinus of, pi over 2, and denominator 3 19 $\mathrm{tan}\left(-\pi \right)$ tangent negative pi tangens negative pi 20 $\mathrm{sin}\left(x+\pi \right)$ the sine of, open paren, x plus pi, close paren the sinus of, venstre parantes, x plustegn pi, højre parantes 21 $\mathrm{cos}\left(x+\frac{\pi }{2}\right)$ the cosine of, open paren, x plus, pi over 2, close paren the cosinus of, venstre parantes, x plustegn, pi over 2, højre parantes 22 $\mathrm{cos}\left(\frac{\pi }{2}+x\right)$ the cosine of, open paren, pi over 2, plus x, close paren the cosinus of, venstre parantes, pi over 2, plustegn x, højre parantes 23 ${\mathrm{sin}}^{2}x+{\mathrm{cos}}^{2}x=1$ sine squared x, plus, cosine squared x, equals 1 sinus squared x, plustegn, cosinus squared x, lig med 1 24 ${\mathrm{sin}}^{4}x$ the fourth power of sine x the fjerde power of sinus x 25 ${\mathrm{cos}}^{5}x$ the fifth power of cosine x the femte power of cosinus x 26 ${\mathrm{tan}}^{n}x$ the n-th power of tangent x the n-th power of tangens x 27 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x sinus x over cosinus x 28 $\mathrm{tan}35°$ tangent 35 degrees tangens 35 grader 29 $\mathrm{tan}\left(\angle DEF\right)$ the tangent of, open paren, angle D E F, close paren the tangens of, venstre parantes, vinkel D E F, højre parantes 30 $\mathrm{tan}\left(\angle D\right)$ the tangent of, open paren, angle D, close paren the tangens of, venstre parantes, vinkel D, højre parantes 31 $\mathrm{sin}\left(x+y\right)=\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ the sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine y the sinus of, venstre parantes, x plustegn y, højre parantes, lig med, sinus x cosinus y, plustegn, cosinus x sinus y 32 $\mathrm{cos}\left(x+y\right)=\mathrm{cos}x\mathrm{cos}y-\mathrm{sin}x\mathrm{sin}y$ the cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine y the cosinus of, venstre parantes, x plustegn y, højre parantes, lig med, cosinus x cosinus y, minustegn, sinus x sinus y 33 $\mathrm{tan}\left(x+y\right)=\frac{\mathrm{tan}x-\mathrm{tan}y}{1-\mathrm{tan}x\mathrm{tan}y}$ the tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent y the tangens of, venstre parantes, x plustegn y, højre parantes, lig med, the fraction with numerator tangens x minustegn tangens y, and denominator 1 minustegn, tangens x tangens y 34 $\mathrm{tan}\left(\frac{\pi }{6}+\frac{2\pi }{3}\right)=\frac{\mathrm{tan}\frac{\pi }{6}-\mathrm{tan}\frac{2\pi }{3}}{1-\mathrm{tan}\frac{\pi }{6}\mathrm{tan}\frac{2\pi }{3}}$ the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3 the tangens of, venstre parantes, pi over 6, plustegn, 2 pi over 3, højre parantes, lig med, the fraction with numerator, the tangens of, pi over 6, minustegn, the tangens of, 2 pi over 3, and denominator 1 minustegn, the tangens of, pi over 6, the tangens of, 2 pi over 3 35 $\mathrm{tan}2x=\frac{2\mathrm{tan}x}{1-{\mathrm{tan}}^{2}x}$ tangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared x tangens 2 x, lig med, the fraction with numerator 2 tangens x, and denominator 1 minustegn, tangens squared x 36 $\mathrm{cos}2x=2{\mathrm{cos}}^{2}x-1$ cosine 2 x, equals 2, cosine squared x, minus 1 cosinus 2 x, lig med 2, cosinus squared x, minustegn 1 37 $\mathrm{sin}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{2}}$ the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2 the sinus of, x over 2, lig med plus minus the square root of, the fraction with numerator 1 minustegn cosinus x, and denominator 2 38 $\mathrm{tan}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{1+\mathrm{cos}x}}$ the tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine x the tangens of, x over 2, lig med plus minus the square root of, the fraction with numerator 1 minustegn cosinus x, and denominator 1 plustegn cosinus x 39 $\mathrm{cos}x\mathrm{cos}y=2\mathrm{cos}\frac{x+y}{2}\mathrm{cos}\frac{x-y}{2}$ cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2 cosinus x cosinus y, lig med 2, the cosinus of, the fraction with numerator x plustegn y, and denominator 2, the cosinus of, the fraction with numerator x minustegn y, and denominator 2 40 ${\mathrm{sin}}^{-1}x$ the inverse sine of x the inverse sinus of x 41 ${\mathrm{cos}}^{-1}x$ the inverse cosine of x the inverse cosinus of x 42 ${\mathrm{tan}}^{-1}x$ the inverse tangent of x the inverse tangens of x 43 ${\mathrm{cot}}^{-1}x$ the inverse cotangent of x the inverse cotangens of x 44 ${\mathrm{sec}}^{-1}x$ the inverse secant of x the inverse secans of x 45 ${\mathrm{csc}}^{-1}x$ the inverse cosecant of x the inverse cosecans of x 46 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ the inverse sine of, the fraction with numerator the square root of 2, and denominator 2 the inverse sinus of, the fraction with numerator the square root of 2, and denominator 2 47 ${\mathrm{cos}}^{-1}\frac{1}{2}$ the inverse cosine of one half the inverse cosinus of en halve 48 ${\mathrm{tan}}^{-1}17$ the inverse tangent of 17 the inverse tangens of 17 49 ${\mathrm{cot}}^{-1}32$ the inverse cotangent of 32 the inverse cotangens of 32 50 ${\mathrm{sec}}^{-1}100$ the inverse secant of 100 the inverse secans of 100 51 ${\mathrm{csc}}^{-1}85$ the inverse cosecant of 85 the inverse cosecans of 85 52 ${\mathrm{sin}}^{-1}\left(-x\right)$ the inverse sine of negative x the inverse sinus of negative x 53 ${\mathrm{cos}}^{-1}\left(-x\right)$ the inverse cosine of negative x the inverse cosinus of negative x 54 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ the inverse tangent of, open paren, negative x plus 12, close paren the inverse tangens of, venstre parantes, negative x plustegn 12, højre parantes 55 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ the inverse cotangent of, open paren, negative x minus 1, close paren the inverse cotangens of, venstre parantes, negative x minustegn 1, højre parantes 56 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ the inverse sine of sine 0 the inverse sinus of sinus 0 57 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ the inverse cosecant of cosecant x the inverse cosecans of cosecans x 58 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, the inverse cosinus of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 59 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, negative, the inverse cosinus of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 60 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ the inverse sine of, open paren, the cosine of, pi over 4, close paren the inverse sinus of, venstre parantes, the cosinus of, pi over 4, højre parantes 61 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, the inverse cosine of one half sinus, the inverse cosinus of en halve 62 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, the inverse tangent of 1 sinus, the inverse tangens of 1 63 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, the inverse tangent of 1, close paren the sinus of, venstre parantes, negative, the inverse tangens of 1, højre parantes 64 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, the inverse tangent of negative 1, close paren the sinus of, venstre parantes, negative, the inverse tangens of negative 1, højre parantes 65 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ the inverse secant of secant x the inverse secans of secans x 66 $\mathrm{arcsin}x$ arc sine x arcus sinus x 67 $\mathrm{arccos}x$ arc cosine x arcus cosinus x 68 $\mathrm{arctan}x$ arc tangent x arcus tangens x 69 $\mathrm{sinh}x$ hyperbolic sine of x sinus hyperbolsk of x 70 $\mathrm{cosh}x$ hyperbolic cosine of x hyperbolsk cosinus of x 71 $\mathrm{tanh}x$ hyperbolic tangent of x hyperbolsk tangens of x 72 $\mathrm{coth}x$ hyperbolic cotangent of x hyperbolsk cotangens of x 73 $\mathrm{sech}x$ hyperbolic secant of x hyperbolsk sekans of x 74 $\mathrm{csch}x$ hyperbolic cosecant of x hyperbolsk cosecans of x 75 ${\mathrm{sinh}}^{-1}x$ the inverse hyperbolic sine of x the inverse sinus hyperbolsk of x 76 ${\mathrm{cosh}}^{-1}x$ the inverse hyperbolic cosine of x the inverse hyperbolsk cosinus of x 77 ${\mathrm{tanh}}^{-1}x$ the inverse hyperbolic tangent of x the inverse hyperbolsk tangens of x 78 ${\mathrm{coth}}^{-1}x$ the inverse hyperbolic cotangent of x the inverse hyperbolsk cotangens of x 79 ${\mathrm{sech}}^{-1}x$ the inverse hyperbolic secant of x the inverse hyperbolsk sekans of x 80 ${\mathrm{csch}}^{-1}x$ the inverse hyperbolic cosecant of x the inverse hyperbolsk cosecans of x 81 $\mathrm{sinh}\left({\mathrm{sinh}}^{-1}x\right)$ hyperbolic sine of, the inverse hyperbolic sine of x sinus hyperbolsk of, the inverse sinus hyperbolsk of x 82 $\mathrm{cosh}\left({\mathrm{cosh}}^{-1}x\right)$ hyperbolic cosine of, the inverse hyperbolic cosine of x hyperbolsk cosinus of, the inverse hyperbolsk cosinus of x 83 $\mathrm{tanh}\left({\mathrm{tanh}}^{-1}x\right)$ hyperbolic tangent of, the inverse hyperbolic tangent of x hyperbolsk tangens of, the inverse hyperbolsk tangens of x 84 $\mathrm{coth}\left({\mathrm{coth}}^{-1}x\right)$ hyperbolic cotangent of, the inverse hyperbolic cotangent of x hyperbolsk cotangens of, the inverse hyperbolsk cotangens of x 85 ${\mathrm{sinh}}^{-1}\left(\mathrm{sinh}x\right)$ the inverse hyperbolic sine of, hyperbolic sine of x the inverse sinus hyperbolsk of, sinus hyperbolsk of x 86 ${\mathrm{cosh}}^{-1}\left(\mathrm{cosh}x\right)$ the inverse hyperbolic cosine of, hyperbolic cosine of x the inverse hyperbolsk cosinus of, hyperbolsk cosinus of x 87 ${\mathrm{tanh}}^{-1}\left(\mathrm{tanh}x\right)$ the inverse hyperbolic tangent of, hyperbolic tangent of x the inverse hyperbolsk tangens of, hyperbolsk tangens of x 88 ${\mathrm{coth}}^{-1}\left(\mathrm{coth}x\right)$ the inverse hyperbolic cotangent of, hyperbolic cotangent of x the inverse hyperbolsk cotangens of, hyperbolsk cotangens of x

## Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_Auto:Roots_RootEnd.

 0 $\mathrm{sin}\left(-\frac{\pi }{8}\right)=-\frac{1}{2}\sqrt{2-\sqrt{2}}$ the sine of, open paren, negative, pi over 8, close paren, equals negative one half the square root of 2 minus the square root of 2, end root, end root the sinus of, venstre parantes, negative, pi over 8, højre parantes, lig med negative en halve the square root of 2 minustegn the square root of 2, end root, end root 1 $\mathrm{tan}\frac{3\pi }{8}=\frac{\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}$ the tangent of, 3 pi over 8, equals, the fraction with numerator the square root of, the square root of 2, end root, plus 1, end root, and denominator the square root of, the square root of 2, end root, minus 1, end root the tangens of, 3 pi over 8, lig med, the fraction with numerator the square root of, the square root of 2, end root, plustegn 1, end root, and denominator the square root of, the square root of 2, end root, minustegn 1, end root 2 $\mathrm{tan}\frac{\pi }{12}=\frac{1}{2}\sqrt{2-\sqrt{3}}$ the tangent of, pi over 12, equals one half the square root of 2 minus the square root of 3, end root, end root the tangens of, pi over 12, lig med en halve the square root of 2 minustegn the square root of 3, end root, end root

## Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_TrigInverse.

 0 ${\mathrm{sin}}^{-1}x$ sine inverse of x sinus inverse of x 1 ${\mathrm{cos}}^{-1}x$ cosine inverse of x cosinus inverse of x 2 ${\mathrm{tan}}^{-1}x$ tangent inverse of x tangens inverse of x 3 ${\mathrm{cot}}^{-1}x$ cotangent inverse of x cotangens inverse of x 4 ${\mathrm{sec}}^{-1}x$ secant inverse of x secans inverse of x 5 ${\mathrm{csc}}^{-1}x$ cosecant inverse of x cosecans inverse of x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ sine inverse of, the fraction with numerator the square root of 2, and denominator 2 sinus inverse of, the fraction with numerator the square root of 2, and denominator 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ cosine inverse of one half cosinus inverse of en halve 8 ${\mathrm{tan}}^{-1}17$ tangent inverse of 17 tangens inverse of 17 9 ${\mathrm{cot}}^{-1}32$ cotangent inverse of 32 cotangens inverse of 32 10 ${\mathrm{sec}}^{-1}100$ secant inverse of 100 secans inverse of 100 11 ${\mathrm{csc}}^{-1}85$ cosecant inverse of 85 cosecans inverse of 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ sine inverse of negative x sinus inverse of negative x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ cosine inverse of negative x cosinus inverse of negative x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ tangent inverse of, open paren, negative x plus 12, close paren tangens inverse of, venstre parantes, negative x plustegn 12, højre parantes 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ cotangent inverse of, open paren, negative x minus 1, close paren cotangens inverse of, venstre parantes, negative x minustegn 1, højre parantes 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ sine inverse of sine 0 sinus inverse of sinus 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ cosecant inverse of cosecant x cosecans inverse of cosecans x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, cosine inverse of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, cosinus inverse of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, cosine inverse of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, negative, cosinus inverse of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ sine inverse of, open paren, the cosine of, pi over 4, close paren sinus inverse of, venstre parantes, the cosinus of, pi over 4, højre parantes 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, cosine inverse of one half sinus, cosinus inverse of en halve 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, tangent inverse of 1 sinus, tangens inverse of 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, tangent inverse of 1, close paren the sinus of, venstre parantes, negative, tangens inverse of 1, højre parantes 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, tangent inverse of negative 1, close paren the sinus of, venstre parantes, negative, tangens inverse of negative 1, højre parantes 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ secant inverse of secant x secans inverse of secans x

## Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_ArcTrig.

 0 ${\mathrm{sin}}^{-1}x$ arc sine x arc sinus x 1 ${\mathrm{cos}}^{-1}x$ arc cosine x arc cosinus x 2 ${\mathrm{tan}}^{-1}x$ arc tangent x arc tangens x 3 ${\mathrm{cot}}^{-1}x$ arc cotangent x arc cotangens x 4 ${\mathrm{sec}}^{-1}x$ arc secant x arc secans x 5 ${\mathrm{csc}}^{-1}x$ arc cosecant x arc cosecans x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ arc sine of, the fraction with numerator the square root of 2, and denominator 2 arc sinus of, the fraction with numerator the square root of 2, and denominator 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ arc cosine one half arc cosinus en halve 8 ${\mathrm{tan}}^{-1}17$ arc tangent 17 arc tangens 17 9 ${\mathrm{cot}}^{-1}32$ arc cotangent 32 arc cotangens 32 10 ${\mathrm{sec}}^{-1}100$ arc secant 100 arc secans 100 11 ${\mathrm{csc}}^{-1}85$ arc cosecant 85 arc cosecans 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ arc sine negative x arc sinus negative x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ arc cosine negative x arc cosinus negative x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ arc tangent of, open paren, negative x plus 12, close paren arc tangens of, venstre parantes, negative x plustegn 12, højre parantes 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ arc cotangent of, open paren, negative x minus 1, close paren arc cotangens of, venstre parantes, negative x minustegn 1, højre parantes 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ arc sine, sine 0 arc sinus, sinus 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ arc cosecant, cosecant x arc cosecans, cosecans x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, arc cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, arc cosinus of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, arc cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren the cosinus of, venstre parantes, negative, arc cosinus of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ arc sine of, open paren, the cosine of, pi over 4, close paren arc sinus of, venstre parantes, the cosinus of, pi over 4, højre parantes 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, arc cosine one half sinus, arc cosinus en halve 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, arc tangent 1 sinus, arc tangens 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, arc tangent 1, close paren the sinus of, venstre parantes, negative, arc tangens 1, højre parantes 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, arc tangent negative 1, close paren the sinus of, venstre parantes, negative, arc tangens negative 1, højre parantes 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ arc secant, secant x arc secans, secans x

## Danish Clearspeak Units tests. Locale: da, Style: Verbose.

 0 ${\mathrm{in}}^{2}$ square inches square tommer 1 ${s}^{2}$ seconds to the second power sekunder to the anden power 2 ${m}^{2}$ square meters square meter 3 ${\mathrm{in}}^{3}$ cubic inches cubic tommer 4 ${s}^{3}$ seconds to the third power sekunder to the tredje power 5 ${m}^{3}$ cubic meters cubic meter 6 ${\mathrm{in}}^{-1}$ reciprocal inches reciprocal tommer 7 ${\mathrm{in}}^{-1}{\mathrm{mm}}^{-1}$ reciprocal inches per millimeter reciprocal tommer per millimeter 8 $\frac{\mathrm{in}}{\mathrm{mm}}$ inches per millimeter tommer per millimeter 9 $\mathrm{km}$ kilometers kilometer 10 $\mathrm{A}$ amperes ampere 11 $\mathrm{\Omega }$ ohms ohm 12 $\mathrm{k\Omega }$ kilohms kiloohm 13 $\mathrm{°C}$ Celsius Celsius 14 $\mathrm{min}\mathrm{min}$ min of minutes minimum of minutter 15 $3\mathrm{km}$ 3 kilometers 3 kilometer 16 $\mathrm{km}+\mathrm{s}$ kilometers plus seconds kilometer plustegn sekunder 17 ${\mathrm{km}}^{2}$ square kilometers square kilometer 18 ${\mathrm{m}}^{3}$ cubic meters cubic meter 19 ${\mathrm{km}}^{4}$ kilometers to the fourth power kilometer to the fjerde power 20 ${\mathrm{m}}^{-1}$ reciprocal meters reciprocal meter 21 $\mathrm{s}{\mathrm{m}}^{-1}$ seconds per meter sekunder per meter 22 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power sekunder per meter to the negative 1 power 23 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power sekunder per meter to the negative 1 power 24 $3{\mathrm{m}}^{-1}$ 3 reciprocal meters 3 reciprocal meter 25 $\frac{\mathrm{km}}{\mathrm{h}}$ kilometers per hour kilometer per time 26 $\mathrm{N}\frac{\mathrm{km}}{\mathrm{h}}$ Newtons kilometers per hour Newton kilometer per time 27 $\frac{m}{\mathrm{km}}$ m over kilometers m over kilometer 28 $3\mathrm{km}\mathrm{h}$ 3 kilometers hours 3 kilometer timer 29 $\mathrm{s}3m\mathrm{km}\mathrm{h}$ seconds 3 m kilometers hours sekunder 3 m kilometer timer 30 $\mathrm{km}{\mathrm{s}}^{2}3m\mathrm{km}\mathrm{h}$ kilometers seconds to the second power 3 m kilometers hours kilometer sekunder to the anden power 3 m kilometer timer 31 $3m\mathrm{km}\mathrm{h}\frac{N}{{\mathrm{s}}^{2}}$ 3 m kilometers hours the fraction with numerator N and denominator seconds to the second power 3 m kilometer timer the fraction with numerator N and denominator sekunder to the anden power 32 $3m\mathrm{km}\mathrm{h}\frac{\mathrm{N}}{{\mathrm{s}}^{2}}$ 3 m kilometers hours Newtons per second to the second power 3 m kilometer timer Newton per sekund to the anden power 33 $4\mathrm{mm}$ 4 millimeters 4 millimeter 34 $1\mathrm{mm}$ 1 millimeter 1 millimeter 35 $4\mathrm{mm}$ 4 millimeters 4 millimeter 36 $1\mathrm{mm}$ 1 millimeter 1 millimeter 37 $ms$ meters seconds meter sekunder 38 $ms$ m seconds m sekunder 39 $ms$ meters s meter s 40 $ms$ meters seconds meter sekunder 41 $ms$ m seconds m sekunder 42 $ms$ meters s meter s 43 $msl$ meters seconds liters meter sekunder liter 44 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 63360 tommer lig med 63360 tommer lig med 63360 tommer lig med 63360 inches lig med 5280 fod lig med 5280 fod lig med 5280 fod lig med 5280 feet lig med 1760 yards lig med 1760 yards lig med 1760 yards lig med 1 mil lig med 1 mil lig med 1 mile 45 $8000\mathrm{li}=8000\mathrm{li.}=8000\mathrm{links}=320\mathrm{rd}=320\mathrm{rd.}=320\mathrm{rods}=80\mathrm{ch}=80\mathrm{ch.}=80\mathrm{chains}=8\mathrm{fur}=8\mathrm{fur.}=8\mathrm{furlongs}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile 8000 links lig med 8000 links lig med 8000 links lig med 320 stænger lig med 320 stænger lig med 320 rods lig med 80 kæder lig med 80 kæder lig med 80 chains lig med 8 furlong lig med 8 furlong lig med 8 furlongs lig med 1 mil lig med 1 mil lig med 1 mile 46 $43560\mathrm{sq ft}=43560\mathrm{sq. ft.}=43560{\mathrm{ft}}^{2}={{43560}^{\prime }}^{2}=43560\mathrm{square feet}=4840\mathrm{sq yd}=4840\mathrm{sq. yd.}=4840{\mathrm{yd}}^{2}=4840\mathrm{square yards}=160\mathrm{sq rd}=160\mathrm{sq. rd.}=160{\mathrm{rd}}^{2}=160\mathrm{square rods}=1\mathrm{ac}=1\mathrm{ac.}=1\mathrm{acre}=\frac{1}{640}\mathrm{sq mi}=\frac{1}{640}\mathrm{sq. mi.}=\frac{1}{640}{\mathrm{mi}}^{2}=\frac{1}{640}\mathrm{square miles}$ 43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles 43560 kvadratfod lig med 43560 kvadratfod lig med 43560 square fod lig med 43560 fod squared lig med 43560 square feet lig med 4840 kvadratyard lig med 4840 kvadratyard lig med 4840 square yards lig med 4840 square yards lig med 160 kvadratrødder lig med 160 kvadratrødder lig med 160 square stænger lig med 160 square rods lig med 1 acre lig med 1 acre lig med 1 acre lig med 1 over 640 kvadratmil lig med 1 over 640 kvadratmil lig med 1 over 640 square mil lig med 1 over 640 square miles 47 $46656\mathrm{cu in}=46656\mathrm{cu. in.}=46656{\mathrm{in}}^{3}={{46656}^{″}}^{3}=46656\mathrm{cubic inches}=27\mathrm{cu ft}=27\mathrm{cu. ft.}=27{\mathrm{ft}}^{3}={{27}^{\prime }}^{3}=27\mathrm{cubic feet}=1\mathrm{cu yd}=1\mathrm{cu. yd.}=1{\mathrm{yd}}^{3}=1\mathrm{cubic yard}$ 46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard 46656 kubiktommer lig med 46656 kubiktommer lig med 46656 cubic tommer lig med 46656 tommer cubed lig med 46656 cubic inches lig med 27 kubikfod lig med 27 kubikfod lig med 27 cubic fod lig med 27 fod cubed lig med 27 cubic feet lig med 1 kubikyard lig med 1 kubikyard lig med 1 cubic yard lig med 1 cubic yard 48 $1024\mathrm{fl dr}=1024\mathrm{fl. dr.}=1024\mathrm{fluid drams}=768\mathrm{tsp}=768\mathrm{tsp.}=768\mathrm{teaspoons}=256\mathrm{Tbsp}=256\mathrm{Tbsp.}=256\mathrm{tablespoons}=128\mathrm{fl oz}=128\mathrm{fl. oz.}=128\mathrm{fluid ounces}=16\mathrm{cp}=16\mathrm{cp.}=16\mathrm{cups}=8\mathrm{pt}=8\mathrm{pt.}=8\mathrm{pints}=4\mathrm{qt}=4\mathrm{qt.}=4\mathrm{quarts}=1\mathrm{gal}=1\mathrm{gal.}=1\mathrm{gallon}$ 1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon 1024 fluid drams lig med 1024 fluid drams lig med 1024 fluid drams lig med 768 teskeer lig med 768 teskeer lig med 768 teaspoons lig med 256 spiseskeer lig med 256 spiseskeer lig med 256 tablespoons lig med 128 flydende ounces lig med 128 flydende ounces lig med 128 fluid ounces lig med 16 kopper lig med 16 kopper lig med 16 cups lig med 8 pints lig med 8 pints lig med 8 pints lig med 4 quarts lig med 4 quarts lig med 4 quarts lig med 1 gallon lig med 1 gallon lig med 1 gallon 49 $256\mathrm{dr}=256\mathrm{dr.}=256\mathrm{drams}=16\mathrm{oz}=16\mathrm{oz.}=16\mathrm{ounces}=1\mathrm{#}=1\mathrm{lb}=1\mathrm{lb.}=1\mathrm{pounds}=100\mathrm{cwt}=100\mathrm{cwt.}=100\mathrm{hundredweights}=2000\mathrm{tons}$ 256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons 256 dram lig med 256 dram lig med 256 drams lig med 16 ounces lig med 16 ounces lig med 16 ounces lig med 1 # lig med 1 pund lig med 1 pund lig med 1 pounds lig med 100 hektokilogram lig med 100 hektokilogram lig med 100 hundredweights lig med 2000 tons 50 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 63360 tommer lig med 63360 tommer lig med 63360 tommer lig med 63360 inches lig med 5280 fod lig med 5280 fod lig med 5280 fod lig med 5280 feet lig med 1760 yards lig med 1760 yards lig med 1760 yards lig med 1 mil lig med 1 mil lig med 1 mile 51 $1\mathrm{J}=1\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram times square meters times seconds to the negative 2 power 1 joule lig med 1 kilogram prik square meter prik sekunder to the negative 2 power 52 $1\mathrm{J}=1\mathrm{kg}{\mathrm{m}}^{2}{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 1 joule lig med 1 kilogram square meter sekunder to the negative 2 power 53 $1\mathrm{J}=1·\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 1 joule lig med 1 kilogram square meter sekunder to the negative 2 power 54 ${\mathrm{in}}^{3}$ cubic inches cubic tommer 55 $\frac{\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ kilometers kilograms seconds to the second power per joule kilometer kilogram sekunder to the anden power per joule 56 $\frac{3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 3 kilometers 1 kilogram seconds to the second power over joules 3 kilometer 1 kilogram sekunder to the anden power over joule 57 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over joules 1 kilometer kilogram sekunder to the anden power over joule 58 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{5\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over 5 joules 1 kilometer kilogram sekunder to the anden power over 5 joule 59 $\mathrm{km}$ kilometers kilometer 60 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 3 kilometer kilogram sekunder to the anden power joule 61 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 3 kilometer kilogram sekunder to the anden power joule 62 $3\mathrm{km}4\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 4 kilograms seconds to the second power joules 3 kilometer 4 kilogram sekunder to the anden power joule 63 $3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 1 kilogram seconds to the second power joules 3 kilometer 1 kilogram sekunder to the anden power joule 64 $1\mathrm{km}\mathrm{s}+2\mathrm{km}\mathrm{s}+0\mathrm{km}\mathrm{s}+a\mathrm{km}\mathrm{s}+$ 1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus 1 kilometer sekunder plustegn 2 kilometer sekunder plustegn 0 kilometer sekunder plustegn a kilometer sekunder plustegn 65 $1\mathrm{km}+2\mathrm{km}+0\mathrm{km}+a\mathrm{km}$ 1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers 1 kilometer plustegn 2 kilometer plustegn 0 kilometer plustegn a kilometer 66 $1\frac{2}{3}\mathrm{kg}$ 1 and two thirds kilograms 1 and to tredjedele kilogram 67 $1\frac{2}{3}\mathrm{kg}\mathrm{km}$ 1 and two thirds kilograms kilometers 1 and to tredjedele kilogram kilometer 68 $1\mathrm{km}2\mathrm{kg}\mathrm{km}$ 1 kilometer 2 kilograms kilometers 1 kilometer 2 kilogram kilometer 69 $1\mathrm{km}\mathrm{kg}\mathrm{s}+2\mathrm{km}\mathrm{kg}\mathrm{s}+0\mathrm{km}\mathrm{kg}\mathrm{s}+a\mathrm{km}\mathrm{kg}\mathrm{s}+$ 1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus 1 kilometer kilogram sekunder plustegn 2 kilometer kilogram sekunder plustegn 0 kilometer kilogram sekunder plustegn a kilometer kilogram sekunder plustegn 70 $1\mathrm{}$ 1 dollar 1 dollar 71 $\mathrm{}1$ 1 dollars 1 dollars 72 $\mathrm{}$ dollars dollars 73 $\mathrm{}$ dollars dollars 74 $2\mathrm{}$ 2 dollars 2 dollars 75 $\mathrm{}2$ 2 dollars 2 dollars 76 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 1 dollar plustegn 2 dollars plustegn 0 dollars plustegn a dollars 77 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 1 dollar plustegn 2 dollars plustegn 0 dollars plustegn a dollars 78 $1\mathrm{€}+2\mathrm{€}+0\mathrm{€}+a\mathrm{€}$ 1 euro plus 2 euros plus 0 euros plus a euros 1 euro plustegn 2 euro plustegn 0 euro plustegn a euro 79 $1\mathrm{￡}+2\mathrm{￡}+0\mathrm{￡}+a\mathrm{￡}$ 1 pound plus 2 pounds plus 0 pounds plus a pounds 1 pund plustegn 2 pund plustegn 0 pund plustegn a pund

## Danish Clearspeak Units tests. Locale: da, Style: Currency_Position.

 0 $1\mathrm{}$ 1 dollars 1 dollars 1 $\mathrm{}1$ dollars 1 dollars 1 2 $\mathrm{}$ dollars dollars 3 $\mathrm{}$ dollars dollars 4 $2\mathrm{}$ 2 dollars 2 dollars 5 $\mathrm{}2$ dollars 2 dollars 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollars plus 2 dollars plus 0 dollars plus a dollars 1 dollars plustegn 2 dollars plustegn 0 dollars plustegn a dollars 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollars plus dollars 2 plus 0 dollars plus dollars a 1 dollars plustegn dollars 2 plustegn 0 dollars plustegn dollars a

## Danish Clearspeak Units tests. Locale: da, Style: Currency_Prefix.

 0 $1\mathrm{}$ dollars 1 dollars 1 1 $\mathrm{}1$ dollars 1 dollars 1 2 $\mathrm{}$ dollars dollars 3 $\mathrm{}$ dollars dollars 4 $2\mathrm{}$ dollars 2 dollars 2 5 $\mathrm{}2$ dollars 2 dollars 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a dollars 1 plustegn dollars 2 plustegn dollars 0 plustegn dollars a 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a dollars 1 plustegn dollars 2 plustegn dollars 0 plustegn dollars a

## Danish Clearspeak Neutral Fences rule tests. Locale: da, Style: Verbose.

 0 $|a|$ the absolute value of a the absolute value of a 1 $｜a｜$ the absolute value of a the absolute value of a 2 $¦a¦$ the absolute value of a the absolute value of a 3 $\parallel a\parallel$ the metric of a the metric of a 4 $⦀a⦀$ the metric of a the metric of a 5 $⫴a⫴$ the metric of a the metric of a 6 $‖a‖$ the metric of a the metric of a 7 $｜a‖$ divides a double vertical bar divides a dobbelt lodret bar 8 $\parallel a‖$ parallel to a double vertical bar parallel med a dobbelt lodret bar 9 $｜a¦$ divides a divides divides a divides 10 $⦀a‖$ triple vertical bar a double vertical bar tredobbelt lodret streg a dobbelt lodret bar 11 $a｜b$ a divides b a divides b 12 $a|b$ a divides b a divides b 13 $a¦b$ a divides b a divides b 14 $a‖b$ a double vertical bar b a dobbelt lodret bar b 15 $a\parallel b$ a parallel to b a parallel med b 16 $a⦀b$ a triple vertical bar b a tredobbelt lodret streg b 17 $f｜g$ f divides g f divides g 18 $f|g$ f divides g f divides g 19 $f¦g$ f divides g f divides g 20 $f‖g$ f double vertical bar g f dobbelt lodret bar g 21 $f\parallel g$ f parallel to g f parallel med g 22 $f⦀g$ f triple vertical bar g f tredobbelt lodret streg g 23 $\mathrm{sin}⦀g$ sine triple vertical bar g sinus tredobbelt lodret streg g 24 $f|a|$ f of, the absolute value of a f of, the absolute value of a 25 $g|a|$ g of, the absolute value of a g of, the absolute value of a 26 $h|a|$ h of, the absolute value of a h of, the absolute value of a 27 $r|a|$ r times, the absolute value of a r , the absolute value of a 28 $\mathrm{sin}|a|$ sine, the absolute value of a sinus, the absolute value of a 29 $\sum |a|$ the sum of, the absolute value of a the sum of, the absolute value of a 30 $f‖a‖$ f of, the metric of a f of, the metric of a 31 $g‖a‖$ g of, the metric of a g of, the metric of a 32 $h‖a‖$ h of, the metric of a h of, the metric of a 33 $r‖a‖$ r times, the metric of a r , the metric of a 34 $\mathrm{sin}‖a‖$ sine, the metric of a sinus, the metric of a 35 $\sum ‖a‖$ the sum of, the metric of a the sum of, the metric of a

## Danish Clearspeak Neutral Fences rule tests. Locale: da, Style: AbsoluteValue_AbsEnd.

 0 $|a|$ the absolute value of a, end absolute value the absolute value of a, end absolute value 1 $｜a｜$ the absolute value of a, end absolute value the absolute value of a, end absolute value 2 $¦a¦$ the absolute value of a, end absolute value the absolute value of a, end absolute value 3 $\parallel a\parallel$ the metric of a, end metric the metric of a, end metric 4 $⦀a⦀$ the metric of a, end metric the metric of a, end metric 5 $⫴a⫴$ the metric of a, end metric the metric of a, end metric 6 $‖a‖$ the metric of a, end metric the metric of a, end metric 7 $｜a‖$ divides a double vertical bar divides a dobbelt lodret bar 8 $\parallel a‖$ parallel to a double vertical bar parallel med a dobbelt lodret bar 9 $｜a¦$ divides a divides divides a divides 10 $⦀a‖$ triple vertical bar a double vertical bar tredobbelt lodret streg a dobbelt lodret bar 11 $a｜b$ a divides b a divides b 12 $a|b$ a divides b a divides b 13 $a¦b$ a divides b a divides b 14 $a‖b$ a double vertical bar b a dobbelt lodret bar b 15 $a\parallel b$ a parallel to b a parallel med b 16 $a⦀b$ a triple vertical bar b a tredobbelt lodret streg b 17 $f|a|$ f of, the absolute value of a, end absolute value f of, the absolute value of a, end absolute value 18 $g|a|$ g of, the absolute value of a, end absolute value g of, the absolute value of a, end absolute value 19 $h|a|$ h of, the absolute value of a, end absolute value h of, the absolute value of a, end absolute value 20 $r|a|$ r times, the absolute value of a, end absolute value r , the absolute value of a, end absolute value 21 $\mathrm{sin}|a|$ sine, the absolute value of a, end absolute value sinus, the absolute value of a, end absolute value 22 $\sum |a|$ the sum of, the absolute value of a, end absolute value the sum of, the absolute value of a, end absolute value 23 $f‖a‖$ f of, the metric of a, end metric f of, the metric of a, end metric 24 $g‖a‖$ g of, the metric of a, end metric g of, the metric of a, end metric 25 $h‖a‖$ h of, the metric of a, end metric h of, the metric of a, end metric 26 $r‖a‖$ r times, the metric of a, end metric r , the metric of a, end metric 27 $\mathrm{sin}‖a‖$ sine, the metric of a, end metric sinus, the metric of a, end metric 28 $\sum ‖a‖$ the sum of, the metric of a, end metric the sum of, the metric of a, end metric 29 $f｜g$ f divides g f divides g 30 $f|g$ f divides g f divides g 31 $f¦g$ f divides g f divides g 32 $f‖g$ f double vertical bar g f dobbelt lodret bar g 33 $f\parallel g$ f parallel to g f parallel med g 34 $f⦀g$ f triple vertical bar g f tredobbelt lodret streg g 35 $\mathrm{sin}⦀g$ sine triple vertical bar g sinus tredobbelt lodret streg g