Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Auto.

0|x|the absolute value of xthe absolute value of x
1|x+1|the absolute value of x plus 1the absolute value of x plustegn 1
2|x|+1the absolute value of x, plus 1the absolute value of x, plustegn 1
3|x|+|y||z|the absolute value of x, plus, the absolute value of y, is greater than or equal to, the absolute value of zthe absolute value of x, plustegn, the absolute value of y, større end eller lig med, the absolute value of z
4|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
5|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
6|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
7|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
8|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
9|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
10|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_AbsEnd.

0|x|the absolute value of x, end absolute valuethe absolute value of x, end absolute value
1|x+1|the absolute value of x plus 1, end absolute valuethe absolute value of x plustegn 1, end absolute value
2|x|+1the absolute value of x, end absolute value, plus 1the absolute value of x, end absolute value, plustegn 1
3|x|+|y||z|the absolute value of x, end absolute value, plus, the absolute value of y, end absolute value, is greater than or equal to, the absolute value of z, end absolute valuethe absolute value of x, end absolute value, plustegn, the absolute value of y, end absolute value, større end eller lig med, the absolute value of z, end absolute value
4|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
5|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
6|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
7|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
8|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
9|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
10|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Cardinality.

0|S|the cardinality of Sthe cardinality of S

Danish Clearspeak AbsoluteValue rule tests. Locale: da, Style: AbsoluteValue_Determinant.

0|M|the determinant of Mthe determinant of M

Danish Clearspeak CapitalLetters rule tests. Locale: da, Style: Caps_Auto.

0sinAa=sinBbsine A over a, equals, sine B over bsinus A over a, lig med, sinus B over b
1c2=a2+b22abcosCc squared equals a squared plus b squared minus 2 a b cosine Cc squared lig med a squared plustegn b squared minustegn 2 a b cosinus C
2tanA=abtangent A equals, a over btangens A lig med, a over b
3ABA BA B
4aAa Aa A
5bAb Ab A
6BaB aB a
7ABCangle A B Cvinkel A B C
8mABCthe measure of angle A B Cthe measure of vinkel A B C
9mAthe measure of angle Athe measure of vinkel A

Danish Clearspeak CapitalLetters rule tests. Locale: da, Style: Caps_SayCaps.

0sinAa=sinBbsine cap A over a, equals, sine cap B over bsinus stort A over a, lig med, sinus stort B over b
1c2=a2+b22abcosCc squared equals a squared plus b squared minus 2 a b cosine cap Cc squared lig med a squared plustegn b squared minustegn 2 a b cosinus stort C
2tanA=abtangent cap A equals, a over btangens stort A lig med, a over b
3ABcap A, cap Bstort A, stort B
4aAa, cap Aa, stort A
5bAb, cap Ab, stort A
6Bacap B, astort B, a
7ABCangle cap A, cap B, cap Cvinkel stort A, stort B, stort C
8mABCthe measure of angle cap A, cap B, cap Cthe measure of vinkel stort A, stort B, stort C
9mAthe measure of angle cap Athe measure of vinkel stort A
10Aangle cap Avinkel stort A

Danish Clearspeak Coverage tests. Locale: da, Style: Verbose.

0fg(x)f of, g of xf of, g of x
1fgx=f(x)+g(x)f of, g of x, equals f of x, plus g of xf of, g of x, lig med f of x, plustegn g of x
2sin(x)ysine x ysinus x y
3a2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
4a2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
5a2 lines, Line 1: a. Line 2: blank2 lines, Line 1: a. Line 2: blank
6a=b2 lines, Line 1: a; equals; b2 lines, Line 1: a; lig med; b
7a=b2 lines, Line 1: a; equals; b. Line 2: blank2 lines, Line 1: a; lig med; b. Line 2: blank
8a=b2 lines, Line 1: a; equals; b. Line 2: blank2 lines, Line 1: a; lig med; b. Line 2: blank
9a=b122 lines, Line 1: a; equals; b. Line 2: 1; blank; 22 lines, Line 1: a; lig med; b. Line 2: 1; blank; 2
1045°102045 degrees, 10 minutes, 20 seconds45 grader, 10 minutter, 20 sekunder
111°10201 degree, 10 minutes, 20 seconds1 grad, 10 minutter, 20 sekunder
1245°12045 degrees, 1 minute, 20 seconds45 grader, 1 minut, 20 sekunder
1345°10145 degrees, 10 minutes, 1 second45 grader, 10 minutter, 1 sekund
141201 foot, 20 inches1 fod, 20 tommer
1510110 feet, 1 inch10 fod, 1 tomme
1612enclosed with box 12enclosed with kasse 12
1712crossed out 12crossed out 12
1821212 crossed out with 212 crossed out with 2
1912212 crossed out with 212 crossed out with 2
2012212 crossed out with 212 crossed out with 2
2121212 crossed out with 212 crossed out with 2
22Avertical bar Avertical bar A
23AA horizontal barA horizontal bar
24AA vertical barA vertical bar
25AA over horizontal barA over horizontal bar
26a3+bthe square root of, the cube root of a, plus bthe square root of, the cube root of a, plustegn b
27a4+bthe square root of, the fourth root of a, plus bthe square root of, the fjerde root of a, plustegn b
28a+bthe square root of, the square root of a, plus bthe square root of, the square root of a, plustegn b
29xcdableft sub a left super b x right sub c right super dleft sub a left super b x right sub c right super d
30xcedfagbhleft sub a b left super g h x right sub c d right super e fleft sub a b left super g h x right sub c d right super e f
31xdableft sub a left super b x; right super dleft sub a left super b x; right super d
32xcabrleft sub a left super b x right sub c; rleft sub a left super b x right sub c; r
33lxcdbl; left super b x right sub c right super dl; left super b x right sub c right super d
34xcdaleft sub a; x right sub c right super dleft sub a; x right sub c right super d
35{xA|B}the set of all x not in A such that Bthe set of all x not in A such that B
36{B}the set Bthe set B
37{}the empty setthe empty set
38Q+the positive rational numbersthe positive rational numbers
39+the positive rational numbersthe positive rational numbers
40Q-the negative rational numbersthe negative rational numbers
41-the negative rational numbersthe negative rational numbers
42Q2q-twoq-to
432q-twoq-to
44N2n-twon-to
452n-twon-to
46

a

aa
47102010 over 2010 over 20
482kmb2 kilometers over b2 kilometer over b
491.43¯the repeating decimal 1 point 4 followed by repeating digit 3the repeating decimal 1 point 4 followed by repeating digit 3
503223 raised to the 2 squared power3 raised to the 2 squared power
513i23 raised to the i squared power3 raised to the I squared power
5232323 raised to the two thirds squared power3 raised to the to tredjedele squared power
533233 raised to the 2 cubed power3 raised to the 2 cubed power
543i33 raised to the i cubed power3 raised to the I cubed power
5532333 raised to the two thirds cubed power3 raised to the to tredjedele cubed power
56ab=ca is less than or equal to b equals ca mindre end eller lig med b lig med c
573sin(2+x)3 raised to the sine of, open paren, 2 plus x, close paren, power3 raised to the sinus of, venstre parantes, 2 plustegn x, højre parantes, power
58Isum under Isum under I
59ABA under BA under B
60detAdeterminant Adeterminant A

Danish Clearspeak Coverage tests. Locale: da, Style: Prime_Angle.

045°102045 degrees, 10 minutes, 20 seconds45 grader, 10 minutter, 20 sekunder
11°10201 degree, 10 minutes, 20 seconds1 grad, 10 minutter, 20 sekunder
245°12045 degrees, 1 minute, 20 seconds45 grader, 1 minut, 20 sekunder
345°10145 degrees, 10 minutes, 1 second45 grader, 10 minutter, 1 sekund
41201 minute, 20 seconds1 minut, 20 sekunder
510110 minutes, 1 second10 minutter, 1 sekund

Danish Clearspeak Coverage tests. Locale: da, Style: Prime_Length.

045°102045 degrees, 10 minutes, 20 seconds45 grader, 10 minutter, 20 sekunder
11°10201 degree, 10 minutes, 20 seconds1 grad, 10 minutter, 20 sekunder
245°12045 degrees, 1 minute, 20 seconds45 grader, 1 minut, 20 sekunder
345°10145 degrees, 10 minutes, 1 second45 grader, 10 minutter, 1 sekund
41201 foot, 20 inches1 fod, 20 tommer
510110 feet, 1 inch10 fod, 1 tomme

Danish Clearspeak Coverage tests. Locale: da, Style: Enclosed_EndEnclose.

012enclosed with box 12 end enclosedenclosed with kasse 12 end enclosed
112crossed out 12 end crossoutcrossed out 12 end crossout
2212crossed out 12 with 2 end crossoutcrossed out 12 with 2 end crossout
3122crossed out 12 with 2 end crossoutcrossed out 12 with 2 end crossout
4122crossed out 12 with 2 end crossoutcrossed out 12 with 2 end crossout
5212crossed out 12 with 2 end crossoutcrossed out 12 with 2 end crossout

Danish Clearspeak Coverage tests. Locale: da, Style: Roots_PosNegSqRoot.

0a+bthe positive square root of, the positive square root of a, plus bthe positive square root of, the positive square root of a, plustegn b

Danish Clearspeak Coverage tests. Locale: da, Style: Roots_PosNegSqRootEnd.

0a+bthe positive square root of, the positive square root of a, plus b, end rootthe positive square root of, the positive square root of a, plustegn b, end root
1-a+bthe positive square root of, the negative square root of a, end root, plus b, end rootthe positive square root of, the negative square root of a, end root, plustegn b, end root

Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Belongs.

0{xA|B}the set of all x not belonging to A such that Bthe set of all x not belonging to A such that B

Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Element.

0{xA|B}the set of all x not an element of A such that Bthe set of all x not an element of A such that B

Danish Clearspeak Coverage tests. Locale: da, Style: SetMemberSymbol_Member.

0{xA|B}the set of all x not a member of A such that Bthe set of all x not a member of A such that B

Danish Clearspeak Coverage tests. Locale: da, Style: MultiLineLabel_Case.

0f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 02 cases, Case 1: f of x, lig med negative x, if x mindre end 0. Case 2: f of x, lig med x, if x større end eller lig med 0

Danish Clearspeak Coverage tests. Locale: da, Style: MultiLineLabel_Constraint.

0f(x)=xif x<0f(x)=xif x02 constraints, Constraint 1: f of x, equals negative x; if x is less than 0. Constraint 2: f of x, equals x, if x is greater than or equal to 02 constraints, Constraint 1: f of x, lig med negative x; if x mindre end 0. Constraint 2: f of x, lig med x, if x større end eller lig med 0

Danish Clearspeak Coverage tests. Locale: da, Style: VerticalLine_SuchThat.

03|63 such that 63 such that 6

Danish Clearspeak Coverage tests. Locale: da, Style: Matrix_EndVector.

0|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinantthe determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant

Danish Clearspeak Coverage tests. Locale: da, Style: Paren_Speak.

0(f+g)(2+x)open paren, f plus g, close paren, of, open paren, 2 plus x, close parenvenstre parantes, f plustegn g, højre parantes, of, venstre parantes, 2 plustegn x, højre parantes

Danish Clearspeak Coverage tests. Locale: da, Style: Exponent_Ordinal.

0xAx to the Ax to the A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: Verbose.

0{zA:z}the set of all z in A such that zthe set of all z in A such that z
1{zA:z}the set of all z in A such that zthe set of all z in A such that z
2{zA:z}the set of all z not in A such that zthe set of all z not in A such that z
3{Az:z}the set of all A contains as member z such that zthe set of all A indeholder som element z such that z
4{Az:z}the set of all A contains as member z such that zthe set of all A indeholder som element z such that z
5{Az:z}the set of all A does not contain as member z such that zthe set of all A indeholder ikke som element z such that z
6zAz is a member of Az is a member of A
7zAz is a member of Az is a member of A
8zAz is not a member of Az is not a member of A
9AzA contains as member zA indeholder som element z
10AzA contains as member zA indeholder som element z
11AzA does not contain as member zA indeholder ikke som element z
12zAsum over z is a member of Asum over z is a member of A
13zAsum over z is a member of Asum over z is a member of A
14zAsum over z is not a member of Asum over z is not a member of A
15Azsum over A contains as member zsum over A indeholder som element z
16Azsum over A contains as member zsum over A indeholder som element z
17Azsum over A does not contain as member zsum over A indeholder ikke som element z

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Auto.

0zAz is a member of Az is a member of A
1{zA:z}the set of all z in A such that zthe set of all z in A such that z
2zAsum over z is a member of Asum over z is a member of A
3zAz is not a member of Az is not a member of A
4{zA:z}the set of all z not in A such that zthe set of all z not in A such that z
5zAsum over z is not a member of Asum over z is not a member of A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Member.

0zAz is a member of Az is a member of A
1{zA:z}the set of all z member of A such that zthe set of all z member of A such that z
2zAsum over z is a member of Asum over z is a member of A
3zAz is not a member of Az is not a member of A
4{zA:z}the set of all z not a member of A such that zthe set of all z not a member of A such that z
5zAsum over z is not a member of Asum over z is not a member of A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Element.

0zAz is an element of Az is an element of A
1{zA:z}the set of all z element of A such that zthe set of all z element of A such that z
2zAsum over z is an element of Asum over z is an element of A
3zAz is not an element of Az is not an element of A
4{zA:z}the set of all z not an element of A such that zthe set of all z not an element of A such that z
5zAsum over z is not an element of Asum over z is not an element of A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_In.

0zAz is in Az is in A
1{zA:z}the set of all z in A such that zthe set of all z in A such that z
2zAsum over z is in Asum over z is in A
3zAz is not in Az is not in A
4{zA:z}the set of all z not in A such that zthe set of all z not in A such that z
5zAsum over z is not in Asum over z is not in A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Belongs.

0zAz belongs to Az belongs to A
1{zA:z}the set of all z belonging to A such that zthe set of all z belonging to A such that z
2zAsum over z belongs to Asum over z belongs to A
3zAz does not belong to Az does not belong to A
4{zA:z}the set of all z not belonging to A such that zthe set of all z not belonging to A such that z
5zAsum over z does not belong to Asum over z does not belong to A

Danish Clearspeak Coverage for Elements symbol tests. Locale: da, Style: SetMemberSymbol_Belongs:Caps_SayCaps:Fraction_GeneralEndFrac.

0{aA|1a}the set of all a belonging to, cap A such that, the fraction with numerator 1, and denominator a, end fractionthe set of all a belonging to, stort A such that, the fraction with numerator 1, and denominator a, end fraction

Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_Auto.

0323 squared3 squared
1333 cubed3 cubed
2353 to the fifth power3 to the femte power
3313 to the first power3 to the første power
4b1b to the first powerb to the første power
535.03 raised to the 5.0 power3 raised to the 5,0 power
6303 to the 0 power3 to the 0 power
74114 to the 11th power4 to the 11. power
8323 to the negative 2 power3 to the negative 2 power
932.03 raised to the negative 2.0 power3 raised to the negative 2,0 power
104x4 to the x-th power4 to the x-th power
113y+23 raised to the y plus 2 power3 raised to the y plustegn 2 power
12(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powervenstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power
13p12p sub 1, squaredp sub 1, squared
14p13p sub 1, cubedp sub 1, cubed
15p14p sub 1, to the fourth powerp sub 1, to the fjerde power
16p110p sub 1, to the tenth powerp sub 1, to the tiende power
17p1x+1p sub 1, raised to the x plus 1 powerp sub 1, raised to the x plustegn 1 power
18px12p sub, x sub 1, squaredp sub, x sub 1, squared
19px13p sub, x sub 1, cubedp sub, x sub 1, cubed
20px14p sub, x sub 1, to the fourth powerp sub, x sub 1, to the fjerde power
21px110p sub, x sub 1, to the tenth powerp sub, x sub 1, to the tiende power
22px1y+1p sub, x sub 1, raised to the y plus 1 powerp sub, x sub 1, raised to the y plustegn 1 power
233223 raised to the 2 squared power3 raised to the 2 squared power
2432x23 raised to the 2 x squared power3 raised to the 2 x squared power
255235 raised to the 2 cubed power5 raised to the 2 cubed power
2652x35 raised to the 2 x cubed power5 raised to the 2 x cubed power
27322+13 raised to the exponent, 2 squared plus 1, end exponent3 raised to the exponent, 2 squared plustegn 1, end exponent
28322+13 raised to the 2 squared power, plus 13 raised to the 2 squared power, plustegn 1
292x2+3x32 raised to the exponent, x squared plus 3 x cubed, end exponent2 raised to the exponent, x squared plustegn 3 x cubed, end exponent
303343 raised to the exponent, 3 to the fourth power, end exponent3 raised to the exponent, 3 to the fjerde power, end exponent
31334+23 raised to the exponent, 3 to the fourth power, plus 2, end exponent3 raised to the exponent, 3 to the fjerde power, plustegn 2, end exponent
32334+23 raised to the exponent, 3 to the fourth power, end exponent, plus 23 raised to the exponent, 3 to the fjerde power, end exponent, plustegn 2
332x42 raised to the exponent, x to the fourth power, end exponent2 raised to the exponent, x to the fjerde power, end exponent
34210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent
3533103 raised to the exponent, 3 to the tenth power, end exponent3 raised to the exponent, 3 to the tiende power, end exponent
363310+13 raised to the exponent, 3 to the tenth power, plus 1, end exponent3 raised to the exponent, 3 to the tiende power, plustegn 1, end exponent
373310+13 raised to the exponent, 3 to the tenth power, end exponent, plus 13 raised to the exponent, 3 to the tiende power, end exponent, plustegn 1
383(x+1)23 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, squared, end exponent
393(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende power, end exponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, plustegn 2, end exponent
423(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 23 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, end exponent, plustegn 2
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponente raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, squared, end exponent
442n2 to the n-th power2 to the n-th power
452m2 to the m-th power2 to the m-th power
462i2 to the i-th power2 to the I-th power
472j2 to the j-th power2 to the j-th power
482a2 to the a-th power2 to the a-th power

Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_Ordinal.

0323 to the second3 to the anden
1333 to the third3 to the tredje
2303 to the zero3 to the zero
3313 to the first3 to the første
4353 to the fifth3 to the femte
543.04 raised to the 3.0 power4 raised to the 3,0 power
64114 to the eleventh4 to the ellevte
7323 to the negative 23 to the negative 2
832.03 raised to the negative 2.0 power3 raised to the negative 2,0 power
94x4 to the x-th4 to the x-th
103y+23 raised to the y plus 2 power3 raised to the y plustegn 2 power
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powervenstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power
12p12p sub 1, to the secondp sub 1, to the anden
13p13p sub 1, to the thirdp sub 1, to the tredje
14p14p sub 1, to the fourthp sub 1, to the fjerde
15p110p sub 1, to the tenthp sub 1, to the tiende
16p1x+1p sub 1, raised to the x plus 1 powerp sub 1, raised to the x plustegn 1 power
17px12p sub, x sub 1, to the secondp sub, x sub 1, to the anden
18px13p sub, x sub 1, to the thirdp sub, x sub 1, to the tredje
19px14p sub, x sub 1, to the fourthp sub, x sub 1, to the fjerde
20px110p sub, x sub 1, to the tenthp sub, x sub 1, to the tiende
21px1y+1p sub, x sub 1, raised to the y plus 1 powerp sub, x sub 1, raised to the y plustegn 1 power
223223 raised to the exponent, 2 to the second, end exponent3 raised to the exponent, 2 to the anden, end exponent
2332x23 raised to the exponent, 2 x to the second, end exponent3 raised to the exponent, 2 x to the anden, end exponent
245235 raised to the exponent, 2 to the third, end exponent5 raised to the exponent, 2 to the tredje, end exponent
2552x35 raised to the exponent, 2 x to the third, end exponent5 raised to the exponent, 2 x to the tredje, end exponent
26322+13 raised to the exponent, 2 to the second, plus 1, end exponent3 raised to the exponent, 2 to the anden, plustegn 1, end exponent
27322+13 raised to the exponent, 2 to the second, end exponent, plus 13 raised to the exponent, 2 to the anden, end exponent, plustegn 1
282x2+3x32 raised to the exponent, x to the second, plus 3 x to the third, end exponent2 raised to the exponent, x to the anden, plustegn 3 x to the tredje, end exponent
293343 raised to the exponent, 3 to the fourth, end exponent3 raised to the exponent, 3 to the fjerde, end exponent
30334+23 raised to the exponent, 3 to the fourth, plus 2, end exponent3 raised to the exponent, 3 to the fjerde, plustegn 2, end exponent
31334+23 raised to the exponent, 3 to the fourth, end exponent, plus 23 raised to the exponent, 3 to the fjerde, end exponent, plustegn 2
322x42 raised to the exponent, x to the fourth, end exponent2 raised to the exponent, x to the fjerde, end exponent
33210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent
3433103 raised to the exponent, 3 to the tenth, end exponent3 raised to the exponent, 3 to the tiende, end exponent
353310+13 raised to the exponent, 3 to the tenth, plus 1, end exponent3 raised to the exponent, 3 to the tiende, plustegn 1, end exponent
363310+13 raised to the exponent, 3 to the tenth, end exponent, plus 13 raised to the exponent, 3 to the tiende, end exponent, plustegn 1
373(x+1)23 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the anden, end exponent
383(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende, end exponent
393(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th, plustegn 2, end exponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 23 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th, end exponent, plustegn 2
42e12x2e raised to the exponent, negative one half x to the second, end exponente raised to the exponent, negative en halve x to the anden, end exponent
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponente raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, to the anden, end exponent

Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_OrdinalPower.

0323 to the second power3 to the anden power
1333 to the third power3 to the tredje power
2303 to the zero power3 to the zero power
3313 to the first power3 to the første power
4353 to the fifth power3 to the femte power
535.03 raised to the 5.0 power3 raised to the 5,0 power
64114 to the eleventh power4 to the ellevte power
7323 to the negative 2 power3 to the negative 2 power
832.03 raised to the negative 2.0 power3 raised to the negative 2,0 power
94x4 to the x-th power4 to the x-th power
103y+23 raised to the y plus 2 power3 raised to the y plustegn 2 power
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powervenstre parantes, 2 y, minustegn 3, højre parantes, raised to the 3 z, plustegn 8 power
12p12p sub 1, to the second powerp sub 1, to the anden power
13p13p sub 1, to the third powerp sub 1, to the tredje power
14p14p sub 1, to the fourth powerp sub 1, to the fjerde power
15p110p sub 1, to the tenth powerp sub 1, to the tiende power
16p1x+1p sub 1, raised to the x plus 1 powerp sub 1, raised to the x plustegn 1 power
17px12p sub, x sub 1, to the second powerp sub, x sub 1, to the anden power
18px13p sub, x sub 1, to the third powerp sub, x sub 1, to the tredje power
19px14p sub, x sub 1, to the fourth powerp sub, x sub 1, to the fjerde power
20px110p sub, x sub 1, to the tenth powerp sub, x sub 1, to the tiende power
21px1y+1p sub, x sub 1, raised to the y plus 1 powerp sub, x sub 1, raised to the y plustegn 1 power
223223 raised to the exponent, 2 to the second power, end exponent3 raised to the exponent, 2 to the anden power, end exponent
2332x23 raised to the exponent, 2 x to the second power, end exponent3 raised to the exponent, 2 x to the anden power, end exponent
245235 raised to the exponent, 2 to the third power, end exponent5 raised to the exponent, 2 to the tredje power, end exponent
2552x35 raised to the exponent, 2 x to the third power, end exponent5 raised to the exponent, 2 x to the tredje power, end exponent
26322+13 raised to the exponent, 2 to the second power, plus 1, end exponent3 raised to the exponent, 2 to the anden power, plustegn 1, end exponent
27322+13 raised to the exponent, 2 to the second power, end exponent, plus 13 raised to the exponent, 2 to the anden power, end exponent, plustegn 1
282x2+3x32 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent2 raised to the exponent, x to the anden power, plustegn 3 x to the tredje power, end exponent
293343 raised to the exponent, 3 to the fourth power, end exponent3 raised to the exponent, 3 to the fjerde power, end exponent
30334+23 raised to the exponent, 3 to the fourth power, plus 2, end exponent3 raised to the exponent, 3 to the fjerde power, plustegn 2, end exponent
31334+23 raised to the exponent, 3 to the fourth power, end exponent, plus 23 raised to the exponent, 3 to the fjerde power, end exponent, plustegn 2
322x42 raised to the exponent, x to the fourth power, end exponent2 raised to the exponent, x to the fjerde power, end exponent
33210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 raised to the exponent, 10 raised to the x plustegn 3 power, end exponent
3433103 raised to the exponent, 3 to the tenth power, end exponent3 raised to the exponent, 3 to the tiende power, end exponent
353310+13 raised to the exponent, 3 to the tenth power, plus 1, end exponent3 raised to the exponent, 3 to the tiende power, plustegn 1, end exponent
363310+13 raised to the exponent, 3 to the tenth power, end exponent, plus 13 raised to the exponent, 3 to the tiende power, end exponent, plustegn 1
373(x+1)23 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the anden power, end exponent
383(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the tiende power, end exponent
393(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the y plustegn 2 power, end exponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, plustegn 2, end exponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 23 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, to the y-th power, end exponent, plustegn 2
42e12x2e raised to the exponent, negative one half x to the second power, end exponente raised to the exponent, negative en halve x to the anden power, end exponent
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponente raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, to the anden power, end exponent

Danish Clearspeak Exponents rule tests. Locale: da, Style: Exponent_AfterPower.

0323 raised to the power 23 raised to the power 2
1333 raised to the power 33 raised to the power 3
2313 raised to the power 13 raised to the power 1
3303 raised to the power 03 raised to the power 0
4353 raised to the power 53 raised to the power 5
535.03 raised to the power 5.03 raised to the power 5,0
64114 raised to the power 114 raised to the power 11
7323 raised to the power negative 23 raised to the power negative 2
832.03 raised to the power negative 2.03 raised to the power negative 2,0
94x4 raised to the power x4 raised to the power x
103y+23 raised to the power y plus 23 raised to the power y plustegn 2
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8venstre parantes, 2 y, minustegn 3, højre parantes, raised to the power 3 z plustegn 8
12p12p sub 1, raised to the power 2p sub 1, raised to the power 2
13p13p sub 1, raised to the power 3p sub 1, raised to the power 3
14p14p sub 1, raised to the power 4p sub 1, raised to the power 4
15p110p sub 1, raised to the power 10p sub 1, raised to the power 10
16p1x+1p sub 1, raised to the power x plus 1p sub 1, raised to the power x plustegn 1
17px12p sub, x sub 1, raised to the power 2p sub, x sub 1, raised to the power 2
18px13p sub, x sub 1, raised to the power 3p sub, x sub 1, raised to the power 3
19px14p sub, x sub 1, raised to the power 4p sub, x sub 1, raised to the power 4
20px110p sub, x sub 1, raised to the power 10p sub, x sub 1, raised to the power 10
21px1y+1p sub, x sub 1, raised to the power y plus 1p sub, x sub 1, raised to the power y plustegn 1
223223 raised to the exponent, 2 raised to the power 2, end exponent3 raised to the exponent, 2 raised to the power 2, end exponent
2332x23 raised to the exponent, 2 x raised to the power 2, end exponent3 raised to the exponent, 2 x raised to the power 2, end exponent
243223 raised to the exponent, 2 raised to the power 2, end exponent3 raised to the exponent, 2 raised to the power 2, end exponent
2532x23 raised to the exponent, 2 x raised to the power 2, end exponent3 raised to the exponent, 2 x raised to the power 2, end exponent
265235 raised to the exponent, 2 raised to the power 3, end exponent5 raised to the exponent, 2 raised to the power 3, end exponent
2752x35 raised to the exponent, 2 x raised to the power 3, end exponent5 raised to the exponent, 2 x raised to the power 3, end exponent
28322+13 raised to the exponent, 2 raised to the power 2, plus 1, end exponent3 raised to the exponent, 2 raised to the power 2, plustegn 1, end exponent
29322+13 raised to the exponent, 2 raised to the power 2, end exponent, plus 13 raised to the exponent, 2 raised to the power 2, end exponent, plustegn 1
302x2+3x32 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent2 raised to the exponent, x raised to the power 2, plustegn 3 x raised to the power 3, end exponent
313343 raised to the exponent, 3 raised to the power 4, end exponent3 raised to the exponent, 3 raised to the power 4, end exponent
32334+23 raised to the exponent, 3 raised to the power 4, plus 2, end exponent3 raised to the exponent, 3 raised to the power 4, plustegn 2, end exponent
33334+23 raised to the exponent, 3 raised to the power 4, end exponent, plus 23 raised to the exponent, 3 raised to the power 4, end exponent, plustegn 2
342x42 raised to the exponent, x raised to the power 4, end exponent2 raised to the exponent, x raised to the power 4, end exponent
35210x+32 raised to the exponent, 10 raised to the power x plus 3, end exponent2 raised to the exponent, 10 raised to the power x plustegn 3, end exponent
3633103 raised to the exponent, 3 raised to the power 10, end exponent3 raised to the exponent, 3 raised to the power 10, end exponent
373310+13 raised to the exponent, 3 raised to the power 10, plus 1, end exponent3 raised to the exponent, 3 raised to the power 10, plustegn 1, end exponent
383310+13 raised to the exponent, 3 raised to the power 10, end exponent, plus 13 raised to the exponent, 3 raised to the power 10, end exponent, plustegn 1
393(x+1)23 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power 2, end exponent
403(x+1)103 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power 10, end exponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y plustegn 2, end exponent
423(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent3 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y, plustegn 2, end exponent
433(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 23 raised to the exponent, venstre parantes, x plustegn 1, højre parantes, raised to the power y, end exponent, plustegn 2
44e12x2e raised to the exponent, negative one half x raised to the power 2, end exponente raised to the exponent, negative en halve x raised to the power 2, end exponent
45e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponente raised to the exponent, negative en halve , venstre parantes, the fraction with numerator x minustegn my, and denominator sigma, højre parantes, raised to the power 2, end exponent

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Auto.

012one halfen halve
1123212 over 3212 over 32
2xyx over yx over y
32x3y2 x over 3 y2 x over 3 y
4xycdx y over c dx y over c d
51213one half over one thirden halve over en tredjedel
6xynegative x over ynegative x over y
72x3ynegative 2 x over 3 ynegative 2 x over 3 y
8xycdx y over negative c dx y over negative c d
91213one half over negative one thirden halve over negative en tredjedel
102+313the fraction with numerator 2 plus 3, and denominator 13the fraction with numerator 2 plustegn 3, and denominator 13
11x+y2the fraction with numerator x plus y, and denominator 2the fraction with numerator x plustegn y, and denominator 2
12x+yxythe fraction with numerator x plus y, and denominator x minus ythe fraction with numerator x plustegn y, and denominator x minustegn y
13x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus two thirdsthe fraction with numerator x plustegn y, and denominator x minustegn y, plustegn to tredjedele
14milesgallonmiles over gallonmiles over gallon
152miles3gallons2 miles over 3 gallons2 miles over 3 gallons
162miles3gallons2 miles over 3 gallons2 miles over 3 gallons
17riserunrise over runrise over run
18successful outcomestotal outcomessuccessful outcomes over total outcomessuccessful outcomes over total outcomes
196ways of rolling a 736ways of rolling the pair of dice6 ways of rolling a 7 over 36 ways of rolling the pair of dice6 ways of rolling a 7 over 36 ways of rolling the pair of dice
201213one half over one thirden halve over en tredjedel
211213the fraction with numerator 1, and denominator, 2 over one thirdthe fraction with numerator 1, and denominator, 2 over en tredjedel
22123one half over 3en halve over 3
231231 over two thirds1 over to tredjedele
2411321651the fraction with numerator, 11 over 32, and denominator, 16 over 51the fraction with numerator, 11 over 32, and denominator, 16 over 51
2511321651the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51
261+4x2the fraction with numerator 1 plus, 4 over x, and denominator 2the fraction with numerator 1 plustegn, 4 over x, and denominator 2
2732+4xthe fraction with numerator 3, and denominator 2 plus, 4 over xthe fraction with numerator 3, and denominator 2 plustegn, 4 over x
28102212the fraction with numerator, 10 over 22, and denominator one halfthe fraction with numerator, 10 over 22, and denominator en halve
291+23123the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirdsthe fraction with numerator 1 plustegn to tredjedele, and denominator 1 minustegn to tredjedele
301+x21x2the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2the fraction with numerator 1 plustegn, x over 2, and denominator 1 minustegn, x over 2
31x+1x1+1x+1the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 1, plustegn 1, and denominator x plustegn 1
32x+1x4+12x+116the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16the fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 4, plustegn en halve, and denominator x plustegn, 1 over 16
331+x1+2x1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x1 plustegn, the fraction with numerator x, and denominator 1 plustegn, 2 over x
341+x+31+2x+31 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 31 plustegn, the fraction with numerator x plustegn 3, and denominator 1 plustegn, the fraction with numerator 2, and denominator x plustegn 3
351+11+11+11+11 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 11 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn 1
361+11+11+11+1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn tre prikker
37a0+1a1+1a2+1a3+a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dota sub 0, plustegn, the fraction with numerator 1, and denominator, a sub 1, plustegn, the fraction with numerator 1, and denominator, a sub 2, plustegn, the fraction with numerator 1, and denominator, a sub 3, plustegn tre prikker
38f(x)g(x)f of x, over g of xf of x, over g of x
39f(x)+g(x)g(x)the fraction with numerator f of x, plus g of x, and denominator g of xthe fraction with numerator f of x, plustegn g of x, and denominator g of x
40f(x+1)g(x)the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of xthe fraction with numerator f of, venstre parantes, x plustegn 1, højre parantes, and denominator g of x
41f(x)2f of x, over 2f of x, over 2
422f(x)2 over f of x2 over f of x
432g(x)+g(x+1)the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close parenthe fraction with numerator 2, and denominator g of x, plustegn g of, venstre parantes, x plustegn 1, højre parantes
44sinxcosxsine x over cosine xsinus x over cosinus x
45sinx+cosxcosxthe fraction with numerator sine x plus cosine x, and denominator cosine xthe fraction with numerator sinus x plustegn cosinus x, and denominator cosinus x
46sin2xcos3xsine 2 x over cosine 3 xsinus 2 x over cosinus 3 x
47sin(x+y)cos(x+y)the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close parenthe fraction with numerator, the sinus of, venstre parantes, x plustegn y, højre parantes, and denominator, the cosinus of, venstre parantes, x plustegn y, højre parantes
48f(2x)g(3x)f of 2 x, over g of 3 xf of 2 x, over g of 3 x
49logxlogylog x over log ylogaritme x over logaritme y
50log2xlog3ylog 2 x over log 3 ylogaritme 2 x over logaritme 3 y
51log10xlog5ythe log base 10 of, x, over, the log base 5 of, ythe logaritme base 10 of, x, over, the logaritme base 5 of, y
52log102xlog53ythe log base 10 of, 2 x, over, the log base 5 of, 3 ythe logaritme base 10 of, 2 x, over, the logaritme base 5 of, 3 y
53log(x+1)logythe fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log ythe fraction with numerator, the logaritme of, venstre parantes, x plustegn 1, højre parantes, and denominator logaritme y
54f1(x)g1(x)f sub 1, of x, over, g sub 1, of xf sub 1, of x, over, g sub 1, of x

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Over.

0121 over 21 over 2
1123212 over 3212 over 32
22+3132 plus 3 over 132 plustegn 3 over 13
3x+y2x plus y over 2x plustegn y over 2
4x+yxyx plus y over x minus yx plustegn y over x minustegn y
5x+yxy+23x plus y over x minus y, plus, 2 over 3x plustegn y over x minustegn y, plustegn, 2 over 3
6milesgallonmiles over gallonmiles over gallon
72miles3gallons2 miles over 3 gallons2 miles over 3 gallons

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_OverEndFrac.

0121 over 2, end fraction1 over 2, end fraction
1123212 over 32, end fraction12 over 32, end fraction
22+3132 plus 3 over 13, end fraction2 plustegn 3 over 13, end fraction
3x+y2x plus y over 2, end fractionx plustegn y over 2, end fraction
4x+yxyx plus y over x minus y, end fractionx plustegn y over x minustegn y, end fraction
5x+yxy+23x plus y over x minus y, end fraction, plus, 2 over 3, end fractionx plustegn y over x minustegn y, end fraction, plustegn, 2 over 3, end fraction
6milesgallonsmiles over gallons, end fractionmiles over gallons, end fraction
72miles3gallons2 miles over 3 gallons, end fraction2 miles over 3 gallons, end fraction

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_GeneralEndFrac.

012the fraction with numerator 1, and denominator 2, end fractionthe fraction with numerator 1, and denominator 2, end fraction
11232the fraction with numerator 12, and denominator 32, end fractionthe fraction with numerator 12, and denominator 32, end fraction
22+313the fraction with numerator 2 plus 3, and denominator 13, end fractionthe fraction with numerator 2 plustegn 3, and denominator 13, end fraction
3x+y2the fraction with numerator x plus y, and denominator 2, end fractionthe fraction with numerator x plustegn y, and denominator 2, end fraction
4x+yxythe fraction with numerator x plus y, and denominator x minus y, end fractionthe fraction with numerator x plustegn y, and denominator x minustegn y, end fraction
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, end fraction, plus, the fraction with numerator 2, and denominator 3, end fractionthe fraction with numerator x plustegn y, and denominator x minustegn y, end fraction, plustegn, the fraction with numerator 2, and denominator 3, end fraction
6milesgallonthe fraction with numerator miles, and denominator gallon, end fractionthe fraction with numerator miles, and denominator gallon, end fraction

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_General.

012the fraction with numerator 1, and denominator 2the fraction with numerator 1, and denominator 2
11232the fraction with numerator 12, and denominator 32the fraction with numerator 12, and denominator 32
22+313the fraction with numerator 2 plus 3, and denominator 13the fraction with numerator 2 plustegn 3, and denominator 13
3x+y2the fraction with numerator x plus y, and denominator 2the fraction with numerator x plustegn y, and denominator 2
4x+yxythe fraction with numerator x plus y, and denominator x minus ythe fraction with numerator x plustegn y, and denominator x minustegn y
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus, the fraction with numerator 2, and denominator 3the fraction with numerator x plustegn y, and denominator x minustegn y, plustegn, the fraction with numerator 2, and denominator 3
6milesgallonthe fraction with numerator miles, and denominator gallonthe fraction with numerator miles, and denominator gallon
72miles3gallonsthe fraction with numerator 2 miles, and denominator 3 gallonsthe fraction with numerator 2 miles, and denominator 3 gallons

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_FracOver.

012the fraction 1 over 2the fraction 1 over 2
11232the fraction 12 over 32the fraction 12 over 32
22+313the fraction 2 plus 3 over 13the fraction 2 plustegn 3 over 13
3x+y2the fraction x plus y over 2the fraction x plustegn y over 2
4x+yxythe fraction x plus y over x minus ythe fraction x plustegn y over x minustegn y
5x+yxy+23the fraction x plus y over x minus y, plus, the fraction 2 over 3the fraction x plustegn y over x minustegn y, plustegn, the fraction 2 over 3
6milesgallonthe fraction miles over gallonthe fraction miles over gallon
72miles3gallonsthe fraction 2 miles over 3 gallonsthe fraction 2 miles over 3 gallons

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Per.

0121 per 21 per 2
1123212 per 3212 per 32
22+3132 plus 3 per 132 plustegn 3 per 13
3x+y2x plus y per 2x plustegn y per 2
4x+yxyx plus y per x minus yx plustegn y per x minustegn y
5x+yxy+23x plus y per x minus y, plus, 2 per 3x plustegn y per x minustegn y, plustegn, 2 per 3
6milesgallonmiles per gallonmiles per gallon
72miles3gallons2 miles per 3 gallons2 miles per 3 gallons

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_Ordinal.

012one halfen halve
11232twelve thirty secondstolv toogtredvtedele
22+313the fraction with numerator 2 plus 3, and denominator 13the fraction with numerator 2 plustegn 3, and denominator 13
3x+y2the fraction with numerator x plus y, and denominator 2the fraction with numerator x plustegn y, and denominator 2
4x+yxythe fraction with numerator x plus y, and denominator x minus ythe fraction with numerator x plustegn y, and denominator x minustegn y
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus two thirdsthe fraction with numerator x plustegn y, and denominator x minustegn y, plustegn to tredjedele
6milesgallonmiles over gallonmiles over gallon
72miles3gallons2 miles over 3 gallons2 miles over 3 gallons

Danish Clearspeak Fractions rule tests. Locale: da, Style: Fraction_EndFrac.

012one halfen halve
1123212 over 32, end fraction12 over 32, end fraction
22+313the fraction with numerator 2 plus 3, and denominator 13, end fractionthe fraction with numerator 2 plustegn 3, and denominator 13, end fraction
3x+y2the fraction with numerator x plus y, and denominator 2, end fractionthe fraction with numerator x plustegn y, and denominator 2, end fraction
4x+yxythe fraction with numerator x plus y, and denominator x minus y, end fractionthe fraction with numerator x plustegn y, and denominator x minustegn y, end fraction
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirdsthe fraction with numerator x plustegn y, and denominator x minustegn y, end fraction, plustegn to tredjedele
6milesgallonsmiles over gallonsmiles over gallons
72miles3gallons2 miles over 3 gallons2 miles over 3 gallons
81213one half over one thirden halve over en tredjedel
91213the fraction with numerator 1, and denominator, 2 over one third, end fractionthe fraction with numerator 1, and denominator, 2 over en tredjedel, end fraction
10123one half over 3, end fractionen halve over 3, end fraction
111231 over two thirds, end fraction1 over to tredjedele, end fraction
1211321651the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fractionthe fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction
1311321651the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fractionthe fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction
141+4x2the fraction with numerator 1 plus, 4 over x, and denominator 2, end fractionthe fraction with numerator 1 plustegn, 4 over x, and denominator 2, end fraction
1532+4xthe fraction with numerator 3, and denominator 2 plus, 4 over x, end fractionthe fraction with numerator 3, and denominator 2 plustegn, 4 over x, end fraction
16102212the fraction with numerator, 10 over 22, and denominator one half, end fractionthe fraction with numerator, 10 over 22, and denominator en halve, end fraction
171+23123the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fractionthe fraction with numerator 1 plustegn to tredjedele, and denominator 1 minustegn to tredjedele, end fraction
181+x21x2the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fractionthe fraction with numerator 1 plustegn, x over 2, and denominator 1 minustegn, x over 2, end fraction
19x+1x1+1x+1the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fractionthe fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 1, plustegn 1, and denominator x plustegn 1, end fraction
20x+1x4+12x+116the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fractionthe fraction with numerator, the fraction with numerator x plustegn 1, and denominator x minustegn 4, plustegn en halve, and denominator x plustegn, 1 over 16, end fraction
211+x1+2x1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction1 plustegn, the fraction with numerator x, and denominator 1 plustegn, 2 over x, end fraction
221+x+31+2x+31 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction1 plustegn, the fraction with numerator x plustegn 3, and denominator 1 plustegn, the fraction with numerator 2, and denominator x plustegn 3, end fraction
231+11+11+11+11 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn 1, end fraction
241+11+11+11+1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn, the fraction with numerator 1, and denominator 1 plustegn tre prikker, end fraction
25a0+1a1+1a2+1a3+a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fractiona sub 0, plustegn, the fraction with numerator 1, and denominator, a sub 1, plustegn, the fraction with numerator 1, and denominator, a sub 2, plustegn, the fraction with numerator 1, and denominator, a sub 3, plustegn tre prikker, end fraction

Danish Clearspeak Functions rule tests. Locale: da, Style: Functions_Auto.

0f(x)f of xf of x
1g(x)g of xg of x
2h(x)h of xh of x
3f(2x)f of 2 xf of 2 x
4g(2x)g of negative 2 xg of negative 2 x
5h(12)h of one halfh of en halve
6f(x+1)=f(x)+1f of, open paren, x plus 1, close paren, equals f of x, plus 1f of, venstre parantes, x plustegn 1, højre parantes, lig med f of x, plustegn 1
7g(2x+1)g of, open paren, 2 x, plus 1, close pareng of, venstre parantes, 2 x, plustegn 1, højre parantes
8g(x2)g of, open paren, x squared, close pareng of, venstre parantes, x squared, højre parantes
9f1(x)f inverse of xf inverse of x
10g1(x)g inverse of xg inverse of x
11h1(x)h inverse of xh inverse of x
12f1(2x)f inverse of 2 xf inverse of 2 x
13g1(2x)g inverse of negative 2 xg inverse of negative 2 x
14f1(3x1)f inverse of, open paren, 3 x, minus 1, close parenf inverse of, venstre parantes, 3 x, minustegn 1, højre parantes
15g1(x2)g inverse of, open paren, x squared, close pareng inverse of, venstre parantes, x squared, højre parantes
16h1(12)h inverse of one halfh inverse of en halve
17f1(f(x))f inverse of, f of xf inverse of, f of x
18g1(g(x))g inverse of, g of xg inverse of, g of x
19h1(h(x))h inverse of, h of xh inverse of, h of x
20f1(f(2x))f inverse of, f of 2 xf inverse of, f of 2 x
21g1(g(2x))g inverse of, g of negative 2 xg inverse of, g of negative 2 x
22h1(h(12))h inverse of, h of one halfh inverse of, h of en halve
23f1(f(x+1))=x+1f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1f inverse of, venstre parantes, f of, venstre parantes, x plustegn 1, højre parantes, højre parantes, lig med x plustegn 1
24g1(g(2x+1))g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close pareng inverse of, venstre parantes, g of, venstre parantes, 2 x, plustegn 1, højre parantes, højre parantes
25g1(g(x2))g inverse of, open paren, g of, open paren, x squared, close paren, close pareng inverse of, venstre parantes, g of, venstre parantes, x squared, højre parantes, højre parantes
26f(f1(x))f of, f inverse of xf of, f inverse of x
27g(g1(x))g of, g inverse of xg of, g inverse of x
28h(h1(x))h of, h inverse of xh of, h inverse of x
29f(f1(2x))f of, f inverse of 2 xf of, f inverse of 2 x
30g(g1(2x))g of, g inverse of negative 2 xg of, g inverse of negative 2 x
31f(f1(3x1))f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close parenf of, venstre parantes, f inverse of, venstre parantes, 3 x, minustegn 1, højre parantes, højre parantes
32g(g1(x2))g of, g inverse of, open paren, x squared, close pareng of, g inverse of, venstre parantes, x squared, højre parantes
33h(h1(12))h of, h inverse of one halfh of, h inverse of en halve
34f(g(x))f of, g of xf of, g of x
35f(g(x+1))f of, open paren, g of, open paren, x plus 1, close paren, close parenf of, venstre parantes, g of, venstre parantes, x plustegn 1, højre parantes, højre parantes
36h(g(x))h of, g of xh of, g of x
37h(g(xx+1))h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close parenh of, venstre parantes, g of, venstre parantes, the fraction with numerator x, and denominator x plustegn 1, højre parantes, højre parantes
38(f+g)(x)=f(x)+g(x)open paren, f plus g, close paren, of x, equals f of x, plus g of xvenstre parantes, f plustegn g, højre parantes, of x, lig med f of x, plustegn g of x
39(f+g)(x+1)=f(x+1)+g(x+1)open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close parenvenstre parantes, f plustegn g, højre parantes, of, venstre parantes, x plustegn 1, højre parantes, lig med f of, venstre parantes, x plustegn 1, højre parantes, plustegn g of, venstre parantes, x plustegn 1, højre parantes
40(fg)(x)open paren, f times g, close paren, of xvenstre parantes, f prik g, højre parantes, of x
41(fg)(2x+5)open paren, f times g, close paren, of, open paren, 2 x, plus 5, close parenvenstre parantes, f prik g, højre parantes, of, venstre parantes, 2 x, plustegn 5, højre parantes
42(fg)(x)=f(x)g(x)open paren, f over g, close paren, of x, equals, f of x, over g of xvenstre parantes, f over g, højre parantes, of x, lig med, f of x, over g of x
43(fg)(2x+5)=f(2x+5)g(2x+5)open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close parenvenstre parantes, f over g, højre parantes, of, venstre parantes, 2 x, plustegn 5, højre parantes, lig med, the fraction with numerator f of, venstre parantes, 2 x, plustegn 5, højre parantes, and denominator g of, venstre parantes, 2 x, plustegn 5, højre parantes
44(fg)(x)=f(g(x))open paren, f composed with g, close paren, of x, equals f of, g of xvenstre parantes, f komposition stjerne g, højre parantes, of x, lig med f of, g of x
452f(x)2 f of x2 f of x
46cf(x)c f of xc f of x
47f2(x)f squared of xf squared of x
48f2(2x+1)f squared of, open paren, 2 x, plus 1, close parenf squared of, venstre parantes, 2 x, plustegn 1, højre parantes
49f3(x)f cubed of xf cubed of x
50f3(2x+1)f cubed of, open paren, 2 x, plus 1, close parenf cubed of, venstre parantes, 2 x, plustegn 1, højre parantes
51f4(x)the fourth power of, f of xthe fjerde power of, f of x
52f4(2x+1)the fourth power of, f of, open paren, 2 x, plus 1, close parenthe fjerde power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes
53f5(x)the fifth power of, f of xthe femte power of, f of x
54f5(2x+1)the fifth power of, f of, open paren, 2 x, plus 1, close parenthe femte power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes
55fn(x)the n-th power of, f of xthe n-th power of, f of x
56fn(2x+1)the n-th power of, f of, open paren, 2 x, plus 1, close parenthe n-th power of, f of, venstre parantes, 2 x, plustegn 1, højre parantes
57g2(x)g squared of xg squared of x
58g2(2x+1)g squared of, open paren, 2 x, plus 1, close pareng squared of, venstre parantes, 2 x, plustegn 1, højre parantes
59h3(x)h cubed of xh cubed of x
60h3(2x+1)h cubed of, open paren, 2 x, plus 1, close parenh cubed of, venstre parantes, 2 x, plustegn 1, højre parantes
61g4(x)the fourth power of, g of xthe fjerde power of, g of x
62g4(2x+1)the fourth power of, g of, open paren, 2 x, plus 1, close parenthe fjerde power of, g of, venstre parantes, 2 x, plustegn 1, højre parantes
63h5(x)the fifth power of, h of xthe femte power of, h of x
64h5(2x+1)the fifth power of, h of, open paren, 2 x, plus 1, close parenthe femte power of, h of, venstre parantes, 2 x, plustegn 1, højre parantes
65gn(x)the n-th power of, g of xthe n-th power of, g of x
66gn(2x+1)the n-th power of, g of, open paren, 2 x, plus 1, close parenthe n-th power of, g of, venstre parantes, 2 x, plustegn 1, højre parantes
67f1(x)f sub 1, of xf sub 1, of x
68g2(x3)g sub 2, of, open paren, x cubed, close pareng sub 2, of, venstre parantes, x cubed, højre parantes
69hn(3x2)h sub n, of, open paren, 3 x, minus 2, close parenh sub n, of, venstre parantes, 3 x, minustegn 2, højre parantes
70f11(x)f sub 1, inverse of xf sub 1, inverse of x
71g21(2x+1)g sub 2, inverse of, open paren, 2 x, plus 1, close pareng sub 2, inverse of, venstre parantes, 2 x, plustegn 1, højre parantes
72hn1(x)h sub n, inverse of xh sub n, inverse of x
73g11(g2(x))g sub 1, inverse of, g sub 2, of xg sub 1, inverse of, g sub 2, of x
74f1(g21(x))f sub 1, of, g sub 2, inverse of xf sub 1, of, g sub 2, inverse of x
75f(x,y)f of, open paren, x comma y, close parenf of, venstre parantes, x komma y, højre parantes
76f(x,y,z)f of, open paren, x comma y comma z, close parenf of, venstre parantes, x komma y komma z, højre parantes
77f(x+1,2y)f of, open paren, x plus 1, comma, 2 y, close parenf of, venstre parantes, x plustegn 1, komma, 2 y, højre parantes
78f(2x,x+1,x2)f of, open paren, 2 x, comma, x plus 1, comma, x squared, close parenf of, venstre parantes, 2 x, komma, x plustegn 1, komma, x squared, højre parantes

Danish Clearspeak Functions rule tests. Locale: da, Style: Fraction_Over.

0h(12)h of, open paren, 1 over 2, close parenh of, venstre parantes, 1 over 2, højre parantes
1h1(12)h inverse of, open paren, 1 over 2, close parenh inverse of, venstre parantes, 1 over 2, højre parantes
2h1(h(12))h inverse of, open paren, h of, open paren, 1 over 2, close paren, close parenh inverse of, venstre parantes, h of, venstre parantes, 1 over 2, højre parantes, højre parantes

Danish Clearspeak Functions rule tests. Locale: da, Style: Fraction_FracOver.

0h(h1(12))h of, h inverse of, open paren, the fraction 1 over 2, close parenh of, h inverse of, venstre parantes, the fraction 1 over 2, højre parantes

Danish Clearspeak Functions rule tests. Locale: da, Style: Functions_None.

0f(x)f times xf times x
1g(x)g times xg times x
2h(x)h times xh times x
3f(2x)f times 2 xf times 2 x
4g(2x)g times negative 2 xg times negative 2 x
5h(12)h times one halfh times en halve
6f(x+1)=f(x)+1f times, open paren, x plus 1, close paren, equals, f times x, plus 1f times, venstre parantes, x plustegn 1, højre parantes, lig med, f times x, plustegn 1
7g(2x+1)g times, open paren, 2 x, plus 1, close pareng times, venstre parantes, 2 x, plustegn 1, højre parantes
8g(x2)g times, open paren, x squared, close pareng times, venstre parantes, x squared, højre parantes
9f1(x)f to the negative 1 power, times xf to the negative 1 power, times x
10g1(x)g to the negative 1 power, times xg to the negative 1 power, times x
11h1(x)h to the negative 1 power, times xh to the negative 1 power, times x
12f1(2x)f to the negative 1 power, times 2 xf to the negative 1 power, times 2 x
13g1(2x)g to the negative 1 power, times negative 2 xg to the negative 1 power, times negative 2 x
14f1(3x1)f to the negative 1 power, times, open paren, 3 x, minus 1, close parenf to the negative 1 power, times, venstre parantes, 3 x, minustegn 1, højre parantes
15g1(x2)g to the negative 1 power, times, open paren, x squared, close pareng to the negative 1 power, times, venstre parantes, x squared, højre parantes
16h1(12)h to the negative 1 power, times one halfh to the negative 1 power, times en halve
17f1(f(x))f to the negative 1 power, times, f times xf to the negative 1 power, times, f times x
18g1(g(x))g to the negative 1 power, times, g times xg to the negative 1 power, times, g times x
19h1(h(x))h to the negative 1 power, times, h times xh to the negative 1 power, times, h times x
20f1(f(2x))f to the negative 1 power, times, f times 2 xf to the negative 1 power, times, f times 2 x
21g1(g(2x))g to the negative 1 power, times, g times negative 2 xg to the negative 1 power, times, g times negative 2 x
22h1(h(12))h to the negative 1 power, times, h times one halfh to the negative 1 power, times, h times en halve
23f1(f(x+1))=x+1f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1f to the negative 1 power, times, venstre parantes, f times, venstre parantes, x plustegn 1, højre parantes, højre parantes, lig med x plustegn 1
24g1(g(2x+1))g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close pareng to the negative 1 power, times, venstre parantes, g times, venstre parantes, 2 x, plustegn 1, højre parantes, højre parantes
25g1(g(x2))g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close pareng to the negative 1 power, times, venstre parantes, g times, venstre parantes, x squared, højre parantes, højre parantes
26f(f1(x))f times, open paren, f to the negative 1 power, times x, close parenf times, venstre parantes, f to the negative 1 power, times x, højre parantes
27g(g1(x))g times, open paren, g to the negative 1 power, times x, close pareng times, venstre parantes, g to the negative 1 power, times x, højre parantes
28h(h1(x))h times, open paren, h to the negative 1 power, times x, close parenh times, venstre parantes, h to the negative 1 power, times x, højre parantes
29f(f1(2x))f times, open paren, f to the negative 1 power, times 2 x, close parenf times, venstre parantes, f to the negative 1 power, times 2 x, højre parantes
30g(g1(2x))g times, open paren, g to the negative 1 power, times negative 2 x, close pareng times, venstre parantes, g to the negative 1 power, times negative 2 x, højre parantes
31f(f1(3x1))f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close parenf times, venstre parantes, f to the negative 1 power, times, venstre parantes, 3 x, minustegn 1, højre parantes, højre parantes
32g(g1(x2))g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close pareng times, venstre parantes, g to the negative 1 power, times, venstre parantes, x squared, højre parantes, højre parantes
33h(h1(12))h times, open paren, h to the negative 1 power, times one half, close parenh times, venstre parantes, h to the negative 1 power, times en halve, højre parantes
34f(g(x))f times, g times xf times, g times x
35f(g(x+1))f times, open paren, g times, open paren, x plus 1, close paren, close parenf times, venstre parantes, g times, venstre parantes, x plustegn 1, højre parantes, højre parantes
36h(g(x))h times, g times xh times, g times x
37h(g(xx+1))h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close parenh times, venstre parantes, g times, venstre parantes, the fraction with numerator x, and denominator x plustegn 1, højre parantes, højre parantes
38(f+g)(x)=f(x)+g(x)open paren, f plus g, close paren, times x, equals, f times x, plus, g times xvenstre parantes, f plustegn g, højre parantes, times x, lig med, f times x, plustegn, g times x
39(f+g)(x+1)=f(x+1)+g(x+1)open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close parenvenstre parantes, f plustegn g, højre parantes, times, venstre parantes, x plustegn 1, højre parantes, lig med, f times, venstre parantes, x plustegn 1, højre parantes, plustegn, g times, venstre parantes, x plustegn 1, højre parantes
40(fg)(x)open paren, f times g, close paren, times xvenstre parantes, f prik g, højre parantes, times x
41(fg)(2x+5)open paren, f times g, close paren, times, open paren, 2 x, plus 5, close parenvenstre parantes, f prik g, højre parantes, times, venstre parantes, 2 x, plustegn 5, højre parantes
42(fg)(x)=f(x)g(x)open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times xvenstre parantes, f over g, højre parantes, times x, lig med, the fraction with numerator, f times x, and denominator, g times x
43(fg)(2x+5)=f(2x+5)g(2x+5)open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close parenvenstre parantes, f over g, højre parantes, times, venstre parantes, 2 x, plustegn 5, højre parantes, lig med, the fraction with numerator, f times, venstre parantes, 2 x, plustegn 5, højre parantes, and denominator, g times, venstre parantes, 2 x, plustegn 5, højre parantes
442f(x)2, f times x2, f times x
45cf(x)c, f times xc, f times x
46f2(x)f squared times xf squared times x
47f2(2x+1)f squared times, open paren, 2 x, plus 1, close parenf squared times, venstre parantes, 2 x, plustegn 1, højre parantes
48f3(x)f cubed times xf cubed times x
49f3(2x+1)f cubed times, open paren, 2 x, plus 1, close parenf cubed times, venstre parantes, 2 x, plustegn 1, højre parantes
50f4(x)f to the fourth power, times xf to the fjerde power, times x
51f4(2x+1)f to the fourth power, times, open paren, 2 x, plus 1, close parenf to the fjerde power, times, venstre parantes, 2 x, plustegn 1, højre parantes
52f5(x)f to the fifth power, times xf to the femte power, times x
53f5(2x+1)f to the fifth power, times, open paren, 2 x, plus 1, close parenf to the femte power, times, venstre parantes, 2 x, plustegn 1, højre parantes
54fn(x)f to the n-th power, times xf to the n-th power, times x
55fn(2x+1)f to the n-th power, times, open paren, 2 x, plus 1, close parenf to the n-th power, times, venstre parantes, 2 x, plustegn 1, højre parantes
56g2(x)g squared times xg squared times x
57g2(2x+1)g squared times, open paren, 2 x, plus 1, close pareng squared times, venstre parantes, 2 x, plustegn 1, højre parantes
58h3(x)h cubed times xh cubed times x
59h3(2x+1)h cubed times, open paren, 2 x, plus 1, close parenh cubed times, venstre parantes, 2 x, plustegn 1, højre parantes
60g4(x)g to the fourth power, times xg to the fjerde power, times x
61g4(2x+1)g to the fourth power, times, open paren, 2 x, plus 1, close pareng to the fjerde power, times, venstre parantes, 2 x, plustegn 1, højre parantes
62h5(x)h to the fifth power, times xh to the femte power, times x
63h5(2x+1)h to the fifth power, times, open paren, 2 x, plus 1, close parenh to the femte power, times, venstre parantes, 2 x, plustegn 1, højre parantes
64gn(x)g to the n-th power, times xg to the n-th power, times x
65gn(2x+1)g to the n-th power, times, open paren, 2 x, plus 1, close pareng to the n-th power, times, venstre parantes, 2 x, plustegn 1, højre parantes
66f1(x)f sub 1, times xf sub 1, times x
67g2(x3)g sub 2, times, open paren, x cubed, close pareng sub 2, times, venstre parantes, x cubed, højre parantes
68hn(3x2)h sub n, times, open paren, 3 x, minus 2, close parenh sub n, times, venstre parantes, 3 x, minustegn 2, højre parantes
69f11(x)f sub 1, to the negative 1 power, times xf sub 1, to the negative 1 power, times x
70g21(2x+1)g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close pareng sub 2, to the negative 1 power, times, venstre parantes, 2 x, plustegn 1, højre parantes
71hn1(x)h sub n, to the negative 1 power, times xh sub n, to the negative 1 power, times x
72g11(g2(x))g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close pareng sub 1, to the negative 1 power, times, venstre parantes, g sub 2, times x, højre parantes
73f1(g21(x))f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close parenf sub 1, times, venstre parantes, g sub 2, to the negative 1 power, times x, højre parantes
74f(x,y)f times, open paren, x comma y, close parenf times, venstre parantes, x komma y, højre parantes
75f(x,y,z)f times, open paren, x comma y comma z, close parenf times, venstre parantes, x komma y komma z, højre parantes
76f(x+1,2y)f times, open paren, x plus 1, comma, 2 y, close parenf times, venstre parantes, x plustegn 1, komma, 2 y, højre parantes
77f(2x,x+1,x2)f times, open paren, 2 x, comma, x plus 1, comma, x squared, close parenf times, venstre parantes, 2 x, komma, x plustegn 1, komma, x squared, højre parantes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto.

02(3)2 times 32 3
12[3]2 times 32 3
224(3)2 to the fourth power, times 32 to the fjerde power, 3
32(3+4)2 times, open paren, 3 plus 4, close paren2 , venstre parantes, 3 plustegn 4, højre parantes
42[3+4]2 times, open bracket, 3 plus 4, close bracket2 , kantet venstreparentes, 3 plustegn 4, kantet højreparentes
5(3)(2)3 times 23 2
62(3+4)22 times, open paren, 3 plus 4, close paren, squared2 , venstre parantes, 3 plustegn 4, højre parantes, squared
7(2+7)(36)open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close parenvenstre parantes, 2 plustegn 7, højre parantes, , venstre parantes, 3 minustegn 6, højre parantes
8[2+7][36]open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracketkantet venstreparentes, 2 plustegn 7, kantet højreparentes, , kantet venstreparentes, 3 minustegn 6, kantet højreparentes
9x(y+z)x times, open paren, y plus z, close parenx , venstre parantes, y plustegn z, højre parantes
102(y+1)2 times, open paren, y plus 1, close paren2 , venstre parantes, y plustegn 1, højre parantes
11(21)xopen paren, 2 minus 1, close paren, times xvenstre parantes, 2 minustegn 1, højre parantes, x
12p1(3+7)p sub 1, times, open paren, 3 plus 7, close parenp sub 1, , venstre parantes, 3 plustegn 7, højre parantes
13p1a1p2a2p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, powerp sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 powervenstre parantes, x plustegn y, højre parantes, to the negative 4 power, , venstre parantes, x minustegn y, højre parantes, to the negative 4 power
1524(x+y)2 raised to the 4 times, open paren, x plus y, close paren, power2 raised to the 4 , venstre parantes, x plustegn y, højre parantes, power
16xyx yx y
17x2y3x squared, y cubedx squared, y cubed
18xy+1xy+2x raised to the y plus 1 power, x raised to the y plus 2 powerx raised to the y plustegn 1 power, x raised to the y plustegn 2 power
19ab=abthe square root of a, the square root of b, equals the square root of a bthe square root of a, the square root of b, lig med the square root of a b
20310=30the square root of 3, the square root of 10, equals the square root of 30the square root of 3, the square root of 10, lig med the square root of 30
21232 the square root of 32 the square root of 3
221+231 plus 2 the square root of 31 plustegn 2 the square root of 3
23f(x)=x2(x+1)f of x, equals x squared times, open paren, x plus 1, close parenf of x, lig med x squared , venstre parantes, x plustegn 1, højre parantes
24sinxcosy+cosxsinysine x cosine y, plus, cosine x sine ysinus x cosinus y, plustegn, cosinus x sinus y
25sin(x+y)cos(x+y)the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close parenthe sinus of, venstre parantes, x plustegn y, højre parantes, the cosinus of, venstre parantes, x plustegn y, højre parantes
26log10xythe log base 10 of, x ythe logaritme base 10 of, x y
27log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ythe logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y
28(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1
292(3((4+5)+6))2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2 , venstre parantes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes
302[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2 , kantet venstreparentes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes
312|x|2 times, the absolute value of x2 , the absolute value of x
32|x||y|the absolute value of x, times, the absolute value of ythe absolute value of x, , the absolute value of y
33|x+1||y1|the absolute value of x plus 1, times, the absolute value of y minus 1the absolute value of x plustegn 1, , the absolute value of y minustegn 1
34|x+1||y|1the absolute value of x plus 1, times, the absolute value of y, minus 1the absolute value of x plustegn 1, , the absolute value of y, minustegn 1
35A=h(b1+b22)A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close parenA lig med h of, venstre parantes, the fraction with numerator, b sub 1, plustegn, b sub 2, and denominator 2, højre parantes
36a(0)=0(a)=0a of 0, equals 0 times a equals 0a of 0, lig med 0 a lig med 0
37a(1)=aa of negative 1, equals negative aa of negative 1, lig med negative a
38B(2,6)B of, open paren, 2 comma 6, close parenB of, venstre parantes, 2 komma 6, højre parantes
39p(w)p of wp of w
40x(t)=2t+4x of t, equals 2 t, plus 4x of t, lig med 2 t, plustegn 4
41k(x)=(x+3)(x5)k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close parenk of x, lig med, venstre parantes, x plustegn 3, højre parantes, , venstre parantes, x minustegn 5, højre parantes
42T(t)=Ts+(T0Ts)ektT of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, powerT of t, lig med, T sub s, plustegn, venstre parantes, T sub 0, minustegn, T sub s, højre parantes, e raised to the negative k t, power
43V=lw(8)V equals script l, w of 8V lig med håndskrift l, w of 8

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:Functions_None.

0f(x)=x2(x+1)f times x, equals x squared times, open paren, x plus 1, close parenf times x, lig med x squared , venstre parantes, x plustegn 1, højre parantes
1A=h(b1+b22)A equals, h times, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close parenA lig med, h times, venstre parantes, the fraction with numerator, b sub 1, plustegn, b sub 2, and denominator 2, højre parantes
2a(0)=0(a)=0a times 0, equals 0 times a equals 0a times 0, lig med 0 a lig med 0
3a(1)=aa times negative 1, equals negative aa times negative 1, lig med negative a
4B(2,6)B times, open paren, 2 comma 6, close parenB times, venstre parantes, 2 komma 6, højre parantes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:Paren_SpeakNestingLevel.

02(3((4+5)+6))2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2 , venstre parantes, 3 , anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes
12[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2 , kantet venstreparentes, 3 , venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_Auto:AbsoluteValue_AbsEnd.

0|x+1||y1|the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute valuethe absolute value of x plustegn 1, end absolute value, , the absolute value of y minustegn 1, end absolute value
1|x+1||y|1the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1the absolute value of x plustegn 1, end absolute value, , the absolute value of y, end absolute value, minustegn 1

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes.

02(3)2 times 32 3
12[3]2 times 32 3
224(3)2 to the fourth power, times 32 to the fjerde power, 3
32(3+4)2 times, open paren, 3 plus 4, close paren2 , venstre parantes, 3 plustegn 4, højre parantes
42[3+4]2 times, open bracket, 3 plus 4, close bracket2 , kantet venstreparentes, 3 plustegn 4, kantet højreparentes
5(3)(2)3 times 23 2
62(3+4)22 times, open paren, 3 plus 4, close paren, squared2 , venstre parantes, 3 plustegn 4, højre parantes, squared
7(2+7)(36)open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close parenvenstre parantes, 2 plustegn 7, højre parantes, , venstre parantes, 3 minustegn 6, højre parantes
8[2+7][36]open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracketkantet venstreparentes, 2 plustegn 7, kantet højreparentes, , kantet venstreparentes, 3 minustegn 6, kantet højreparentes
9x(y+z)x times, open paren, y plus z, close parenx , venstre parantes, y plustegn z, højre parantes
102(y+1)2 times, open paren, y plus 1, close paren2 , venstre parantes, y plustegn 1, højre parantes
11(21)xopen paren, 2 minus 1, close paren, times xvenstre parantes, 2 minustegn 1, højre parantes, x
12p1(3+7)p sub 1, times, open paren, 3 plus 7, close parenp sub 1, , venstre parantes, 3 plustegn 7, højre parantes
13p1a1p2a2p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, powerp sub 1, raised to the, a sub 1, power, , p sub 2, raised to the, a sub 2, power
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 powervenstre parantes, x plustegn y, højre parantes, to the negative 4 power, , venstre parantes, x minustegn y, højre parantes, to the negative 4 power
1524(x+y)2 raised to the 4 times, open paren, x plus y, close paren, power2 raised to the 4 , venstre parantes, x plustegn y, højre parantes, power
16xyx times yx y
17x2y3x squared times y cubedx squared y cubed
18xy+1xy+2x raised to the y plus 1 power, times x raised to the y plus 2 powerx raised to the y plustegn 1 power, x raised to the y plustegn 2 power
19ab=abthe square root of a, times the square root of b, equals the square root of a times bthe square root of a, the square root of b, lig med the square root of a b
20310=30the square root of 3, times the square root of 10, equals the square root of 30the square root of 3, the square root of 10, lig med the square root of 30
21232 times the square root of 32 the square root of 3
221+231 plus 2 times the square root of 31 plustegn 2 the square root of 3
23f(x)=x2(x+1)f of x, equals x squared times, open paren, x plus 1, close parenf of x, lig med x squared , venstre parantes, x plustegn 1, højre parantes
24sinxcosy+cosxsinysine x, times cosine y plus cosine x, times sine ysinus x, cosinus y plustegn cosinus x, sinus y
25sin(x+y)cos(x+y)the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close parenthe sinus of, venstre parantes, x plustegn y, højre parantes, , the cosinus of, venstre parantes, x plustegn y, højre parantes
26log10xythe log base 10 of, x times ythe logaritme base 10 of, x y
27log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals log x, times log ythe logaritme of, venstre parantes, x plustegn y, højre parantes, lig med logaritme x, logaritme y
28(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1
292(3((4+5)+6))2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2 , venstre parantes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes
302[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2 , kantet venstreparentes, 3 , venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes
312|x|2 times, the absolute value of x2 , the absolute value of x
32|x||y|the absolute value of x, times, the absolute value of ythe absolute value of x, , the absolute value of y
33|x+1||y1|the absolute value of x plus 1, times, the absolute value of y minus 1the absolute value of x plustegn 1, , the absolute value of y minustegn 1
34|x+1||y|1the absolute value of x plus 1, times, the absolute value of y, minus 1the absolute value of x plustegn 1, , the absolute value of y, minustegn 1

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimesAnd:Functions_None.

0f(x)=x2(x+1)f times x, equals x squared times, open paren, x plus 1, close parenf times x, lig med x squared , venstre parantes, x plustegn 1, højre parantes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes:Paren_SpeakNestingLevel.

02(3((4+5)+6))2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2 , venstre parantes, 3 , anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes
12[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2 , kantet venstreparentes, 3 , venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_MoreImpliedTimes:AbsoluteValue_AbsEnd.

0|x+1||y1|the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute valuethe absolute value of x plustegn 1, end absolute value, , the absolute value of y minustegn 1, end absolute value
1|x+1||y|1the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1the absolute value of x plustegn 1, end absolute value, , the absolute value of y, end absolute value, minustegn 1

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None.

02(3)2, open paren, 3, close paren2, venstre parantes, 3, højre parantes
12[3]2, open bracket, 3, close bracket2, kantet venstreparentes, 3, kantet højreparentes
224(3)2 to the fourth power, open paren, 3, close paren2 to the fjerde power, venstre parantes, 3, højre parantes
32(3+4)2, open paren, 3 plus 4, close paren2, venstre parantes, 3 plustegn 4, højre parantes
42[3+4]2, open bracket, 3 plus 4, close bracket2, kantet venstreparentes, 3 plustegn 4, kantet højreparentes
5(3)(2)open paren, 3, close paren, open paren, 2, close parenvenstre parantes, 3, højre parantes, venstre parantes, 2, højre parantes
62(3+4)22, open paren, 3 plus 4, close paren, squared2, venstre parantes, 3 plustegn 4, højre parantes, squared
7(2+7)(36)open paren, 2 plus 7, close paren, open paren, 3 minus 6, close parenvenstre parantes, 2 plustegn 7, højre parantes, venstre parantes, 3 minustegn 6, højre parantes
8[2+7][36]open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracketkantet venstreparentes, 2 plustegn 7, kantet højreparentes, kantet venstreparentes, 3 minustegn 6, kantet højreparentes
9x(y+z)x, open paren, y plus z, close parenx, venstre parantes, y plustegn z, højre parantes
102(y+1)2, open paren, y plus 1, close paren2, venstre parantes, y plustegn 1, højre parantes
11(21)xopen paren, 2 minus 1, close paren, xvenstre parantes, 2 minustegn 1, højre parantes, x
12p1(3+7)p sub 1, open paren, 3 plus 7, close parenp sub 1, venstre parantes, 3 plustegn 7, højre parantes
13p1a1p2a2p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, powerp sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 powervenstre parantes, x plustegn y, højre parantes, to the negative 4 power, venstre parantes, x minustegn y, højre parantes, to the negative 4 power
1524(x+y)2 raised to the 4, open paren, x plus y, close paren, power2 raised to the 4, venstre parantes, x plustegn y, højre parantes, power
16xyx yx y
17x2y3x squared y cubedx squared y cubed
18xy+1xy+2x raised to the y plus 1 power, x raised to the y plus 2 powerx raised to the y plustegn 1 power, x raised to the y plustegn 2 power
19ab=abthe square root of a, the square root of b, equals the square root of a bthe square root of a, the square root of b, lig med the square root of a b
20310=30the square root of 3, the square root of 10, equals the square root of 30the square root of 3, the square root of 10, lig med the square root of 30
21232 the square root of 32 the square root of 3
221+231 plus 2 the square root of 31 plustegn 2 the square root of 3
23sinxcosy+cosxsinysine x cosine y, plus, cosine x sine ysinus x cosinus y, plustegn, cosinus x sinus y
24log10xythe log base 10 of, x ythe logaritme base 10 of, x y
25log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ythe logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y
26(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1
272(3((4+5)+6))2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2, venstre parantes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes
282[3((4+5)+6)]2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2, kantet venstreparentes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes
292|x|2, the absolute value of x2, the absolute value of x
30|x||y|the absolute value of x, the absolute value of ythe absolute value of x, the absolute value of y
31|x+1||y1|the absolute value of x plus 1, the absolute value of y minus 1the absolute value of x plustegn 1, the absolute value of y minustegn 1
32|x+1||y|1the absolute value of x plus 1, the absolute value of y, minus 1the absolute value of x plustegn 1, the absolute value of y, minustegn 1
33f(x)=x2(x+1)f of x, equals x squared, open paren, x plus 1, close parenf of x, lig med x squared, venstre parantes, x plustegn 1, højre parantes
34log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ythe logaritme of, venstre parantes, x plustegn y, højre parantes, lig med, logaritme x logaritme y

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Functions_Auto.

0f(x)=x2(x+1)f of x, equals x squared, open paren, x plus 1, close parenf of x, lig med x squared, venstre parantes, x plustegn 1, højre parantes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Paren_SpeakNestingLevel.

02(3((4+5)+6))2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2, venstre parantes, 3, anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes
12[3((4+5)+6)]2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2, kantet venstreparentes, 3, venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes
22(3((4+5)+6))2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2, venstre parantes, 3, anden venstre parantes, tredje venstre parantes, 4 plustegn 5, tredje højre parantes, plustegn 6, anden højre parantes, højre parantes
32[3((4+5)+6)]2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2, kantet venstreparentes, 3, venstre parantes, anden venstre parantes, 4 plustegn 5, anden højre parantes, plustegn 6, højre parantes, kantet højreparentes

Danish Clearspeak ImpliedTimes rule tests. Locale: da, Style: ImpliedTimes_None:Paren_Silent.

02(3)2, open paren, 3, close paren2, venstre parantes, 3, højre parantes
12[3]2, open bracket, 3, close bracket2, kantet venstreparentes, 3, kantet højreparentes
224(3)2 to the fourth power, open paren, 3, close paren2 to the fjerde power, venstre parantes, 3, højre parantes
32(3+4)2, open paren, 3 plus 4, close paren2, venstre parantes, 3 plustegn 4, højre parantes
42[3+4]2, open bracket, 3 plus 4, close bracket2, kantet venstreparentes, 3 plustegn 4, kantet højreparentes
5(3)(2)open paren, 3, close paren, open paren, 2, close parenvenstre parantes, 3, højre parantes, venstre parantes, 2, højre parantes
62(3+4)22, open paren, 3 plus 4, close paren, squared2, venstre parantes, 3 plustegn 4, højre parantes, squared
7(2+7)(36)open paren, 2 plus 7, close paren, open paren, 3 minus 6, close parenvenstre parantes, 2 plustegn 7, højre parantes, venstre parantes, 3 minustegn 6, højre parantes
8[2+7][36]open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracketkantet venstreparentes, 2 plustegn 7, kantet højreparentes, kantet venstreparentes, 3 minustegn 6, kantet højreparentes
9x(y+z)x, open paren, y plus z, close parenx, venstre parantes, y plustegn z, højre parantes
102(y+1)2, open paren, y plus 1, close paren2, venstre parantes, y plustegn 1, højre parantes
11(21)xopen paren, 2 minus 1, close paren, xvenstre parantes, 2 minustegn 1, højre parantes, x
12p1(3+7)p sub 1, open paren, 3 plus 7, close parenp sub 1, venstre parantes, 3 plustegn 7, højre parantes
13(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 powervenstre parantes, x plustegn y, højre parantes, to the negative 4 power, venstre parantes, x minustegn y, højre parantes, to the negative 4 power
1424(x+y)2 raised to the 4, open paren, x plus y, close paren, power2 raised to the 4, venstre parantes, x plustegn y, højre parantes, power
15(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1
162(3((4+5)+6))2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2, venstre parantes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, højre parantes
172[3((4+5)+6)]2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2, kantet venstreparentes, 3, venstre parantes, venstre parantes, 4 plustegn 5, højre parantes, plustegn 6, højre parantes, kantet højreparentes

Danish Clearspeak Logarithms rule tests. Locale: da, Style: Log_Auto.

0logxlog xlogaritme x
1log10xthe log base 10 of, xthe logaritme base 10 of, x
2logbax=logba+logbxthe log base b of, a x, equals, the log base b of, a, plus, the log base b of, xthe logaritme base b of, a x, lig med, the logaritme base b of, a, plustegn, the logaritme base b of, x
3logbST=logbSlogbTthe log base b of, S over T, equals, the log base b of, S, minus, the log base b of, Tthe logaritme base b of, S over T, lig med, the logaritme base b of, S, minustegn, the logaritme base b of, T
4logb(xk)=klogbxthe log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, xthe logaritme base b of, venstre parantes, x to the k-th power, højre parantes, lig med k, the logaritme base b of, x
510log10x=x10 raised to the log base 10 of, x, power, equals x10 raised to the logaritme base 10 of, x, power, lig med x
6log1010x=xthe log base 10 of, 10 to the x-th power, equals xthe logaritme base 10 of, 10 to the x-th power, lig med x
710log105=510 raised to the log base 10 of, 5, power, equals 510 raised to the logaritme base 10 of, 5, power, lig med 5
8log10103=3the log base 10 of, 10 cubed, equals 3the logaritme base 10 of, 10 cubed, lig med 3
9logax=logbxlogbathe log base a of, x, equals, the log base b of, x, over, the log base b of, athe logaritme base a of, x, lig med, the logaritme base b of, x, over, the logaritme base b of, a
10log1018log103=log318the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18the logaritme base 10 of, 18, over, the logaritme base 10 of, 3, lig med, the logaritme base 3 of, 18
11logxlogalog x over log alogaritme x over logaritme a
12log(x+1)the log of, open paren, x plus 1, close parenthe logaritme of, venstre parantes, x plustegn 1, højre parantes
13log(x+1)2the log of, open paren, x plus 1, close paren, squaredthe logaritme of, venstre parantes, x plustegn 1, højre parantes, squared
14log(xy)log x ylogaritme x y
15log(x+1)log(x+2)the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close parenthe fraction with numerator, the logaritme of, venstre parantes, x plustegn 1, højre parantes, and denominator, the logaritme of, venstre parantes, x plustegn 2, højre parantes
16log6(x+1)log6(x+2)the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close parenthe fraction with numerator, the logaritme base 6 of, venstre parantes, x plustegn 1, højre parantes, and denominator, the logaritme base 6 of, venstre parantes, x plustegn 2, højre parantes
17log40+log60log5the fraction with numerator log 40 plus log 60, and denominator log 5the fraction with numerator logaritme 40 plustegn logaritme 60, and denominator logaritme 5
18log340+log360log35the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5the fraction with numerator, the logaritme base 3 of, 40, plustegn, the logaritme base 3 of, 60, and denominator, the logaritme base 3 of, 5
19log(34129)=4log3+9log12the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12the logaritme of, venstre parantes, 3 to the fjerde power, 12 to the niende power, højre parantes, lig med 4 logaritme 3, plustegn 9 logaritme 12
20log(xy)the log of, open paren, x over y, close parenthe logaritme of, venstre parantes, x over y, højre parantes
21log(34810)=4log310log8the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8the logaritme of, venstre parantes, the fraction with numerator 3 to the fjerde power, and denominator 8 to the tiende power, højre parantes, lig med 4 logaritme 3, minustegn 10 logaritme 8
2210logx10 raised to the log x power10 raised to the logaritme x power
23lnxl n xnaturlig logaritme x
24lnxln(x1)=ln(xx1)l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close parennaturlig logaritme x, minustegn naturlig logaritme of, venstre parantes, x minustegn 1, højre parantes, lig med naturlig logaritme of, venstre parantes, the fraction with numerator x, and denominator x minustegn 1, højre parantes
25ln(ex)=xl n of, open paren, e to the x-th power, close paren, equals xnaturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x
26elnx=xe raised to the l n x power, equals xe raised to the naturlig logaritme x power, lig med x
27ln(ex)=xl n of, open paren, e to the x-th power, close paren, equals xnaturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x
28eln4=4e raised to the l n 4 power, equals 4e raised to the naturlig logaritme 4 power, lig med 4
29ln40ln5=log540l n 40, over l n 5, equals, the log base 5 of, 40naturlig logaritme 40, over naturlig logaritme 5, lig med, the logaritme base 5 of, 40
30ln40+ln60ln5the fraction with numerator l n 40, plus l n 60, and denominator l n 5the fraction with numerator naturlig logaritme 40, plustegn naturlig logaritme 60, and denominator naturlig logaritme 5

Danish Clearspeak Logarithms rule tests. Locale: da, Style: Log_LnAsNaturalLog.

0lnxnatural log xnaturlig logaritme x
1lnxln(x1)=ln(xx1)natural log x, minus, the natural log of, open paren, x minus 1, close paren, equals, the natural log of, open paren, the fraction with numerator x, and denominator x minus 1, close parennaturlig logaritme x, minustegn, the naturlig logaritme of, venstre parantes, x minustegn 1, højre parantes, lig med, the naturlig logaritme of, venstre parantes, the fraction with numerator x, and denominator x minustegn 1, højre parantes
2ln(ex)=xthe natural log of, open paren, e to the x-th power, close paren, equals xthe naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x
3elnx=xe raised to the natural log x power, equals xe raised to the naturlig logaritme x power, lig med x
4ln(ex)=xthe natural log of, open paren, e to the x-th power, close paren, equals xthe naturlig logaritme of, venstre parantes, e to the x-th power, højre parantes, lig med x
5eln4=4e raised to the natural log 4 power, equals 4e raised to the naturlig logaritme 4 power, lig med 4
6ln40ln5=log540natural log 40, over natural log 5, equals, the log base 5 of, 40naturlig logaritme 40, over naturlig logaritme 5, lig med, the logaritme base 5 of, 40
7ln40+ln60ln5the fraction with numerator natural log 40, plus natural log 60, and denominator natural log 5the fraction with numerator naturlig logaritme 40, plustegn naturlig logaritme 60, and denominator naturlig logaritme 5

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Auto.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
4(123)the 3 by 1 column matrix. 1, 2, 3the 3 by 1 column matrix. 1, 2, 3
5[123]the 3 by 1 column matrix. 1, 2, 3the 3 by 1 column matrix. 1, 2, 3
6(35)the 1 by 2 row matrix. 3, 5the 1 by 2 row matrix. 3, 5
7[35]the 1 by 2 row matrix. 3, 5the 1 by 2 row matrix. 3, 5
8(3)the 1 by 1 matrix with entry 3the 1 by 1 matrix with entry 3
9(3)the 1 by 1 matrix with entry 3the 1 by 1 matrix with entry 3
10(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1the 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1
11(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2
12(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 xthe 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x
13(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2
14(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
15(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
16(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0
17(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5
18(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
19(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
20(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
21(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
22(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel
23(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2
243(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 63 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
25(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
26(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5
27|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
28det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
29|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
30det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
31|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
32det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
33|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
34det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
35|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
36det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
37|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
38det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
39|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel
40det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_SpeakColNum.

0(2175)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
1[2175]the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
2(314026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
3[314026]the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
4(123)the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3
5[123]the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3
6(35)the 1 by 2 row matrix. Column 1: 3 Column 2: 5the 1 by 2 row matrix. Column 1: 3 Column 2: 5
7[35]the 1 by 2 row matrix. Column 1: 3 Column 2: 5the 1 by 2 row matrix. Column 1: 3 Column 2: 5
8(1234)the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4
9[1234]the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4
10(1234)the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4
11[1234]the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4
12(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1the 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1
13(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2
14(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 xthe 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x
15(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2
16(241352147)the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7
17(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
18(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0
19(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5
20(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
21(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
22(2x175)the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
23(2xy1223)the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsthe 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele
24(12233415)the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifththe 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel
25(b11b12b21b22)the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2
263(2175)(314026)3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 63 the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
27(12233415)(31x4026)the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel. the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6
28(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5
29|2175|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
30det(2175)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
31|241352147|the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7
32det(241352147)the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7
33|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
34det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0
35|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
36det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x
37|2x175|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
38det(2x175)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5
39|2xy1223|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele
40det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, en halve; Column 2, to tredjedele
41|12233415|the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifththe determinant of the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel
42det(12233415)the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifththe determinant of the 2 by 2 matrix. Row 1: Column 1, en halve; Column 2, to tredjedele. Row 2: Column 1, tre fjerdedele; Column 2, en femtedel

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_SilentColNum.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
4(123)the 3 by 1 column matrix. 1, 2, 3the 3 by 1 column matrix. 1, 2, 3
5[123]the 3 by 1 column matrix. 1, 2, 3the 3 by 1 column matrix. 1, 2, 3
6(35)the 1 by 2 row matrix. 3, 5the 1 by 2 row matrix. 3, 5
7[35]the 1 by 2 row matrix. 3, 5the 1 by 2 row matrix. 3, 5
8(x+1x1)the 2 by 1 column matrix. x plus 1, x minus 1the 2 by 1 column matrix. x plustegn 1, x minustegn 1
9(3612)the 4 by 1 column matrix. 3, 6, 1, 2the 4 by 1 column matrix. 3, 6, 1, 2
10(x+12x)the 1 by 2 row matrix. x plus 1, 2 xthe 1 by 2 row matrix. x plustegn 1, 2 x
11(3612)the 1 by 4 row matrix. 3, 6, 1, 2the 1 by 4 row matrix. 3, 6, 1, 2
12(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
13(0343210930216290)the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0
14(2105334270)the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0
15(13422105)the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5
16(2175+x)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xthe 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x
17(31x4026)the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6the 2 by 3 matrix. Row 1: 3, 1 minustegn x, 4 Row 2: 0, 2, 6
18(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
19(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
20(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel
21(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2
223(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 63 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6
23(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. the 2 by 3 matrix. Row 1: 3, 1 minustegn x, 4 Row 2: 0, 2, 6
24(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5
25|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
26det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5
27|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
28det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7
29|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0
30det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0
31|2175+x|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x
32det(2175+x)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xthe determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plustegn x
33|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
34det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5
35|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
36det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele
37|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel
38det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifththe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_EndMatrix.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixthe 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixthe 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrixthe 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrixthe 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix
4(123)the 3 by 1 column matrix. 1, 2, 3. end matrixthe 3 by 1 column matrix. 1, 2, 3. end matrix
5[123]the 3 by 1 column matrix. 1, 2, 3. end matrixthe 3 by 1 column matrix. 1, 2, 3. end matrix
6(35)the 1 by 2 row matrix. 3, 5. end matrixthe 1 by 2 row matrix. 3, 5. end matrix
7[35]the 1 by 2 row matrix. 3, 5. end matrixthe 1 by 2 row matrix. 3, 5. end matrix
8(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrixthe 2 by 1 column matrix. Row 1: x plustegn 1 Row 2: x minustegn 1. end matrix
9(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrixthe 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix
10(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrixthe 1 by 2 row matrix. Column 1: x plustegn 1 Column 2: 2 x. end matrix
11(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrixthe 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix
12(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrixthe 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix
13(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrixthe 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix
14(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrixthe 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix
15(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrixthe 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix
16(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrixthe 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end matrix
17(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrixthe 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix
18(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrixthe 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix
19(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrixthe 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end matrix
20(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrixthe 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix
21(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrixthe 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix
223(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix3 the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix
23(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrixthe 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minustegn x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix
24(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrixthe 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix
25|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinantthe determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant
26det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixthe determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix
27|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinantthe determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant
28det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrixthe determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix
29|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinantthe determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant
30det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrixthe determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix
31|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinantthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end determinant
32det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrixthe determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plustegn x. end matrix
33|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinantthe determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant
34det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrixthe determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix
35|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinantthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end determinant
36det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrixthe determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: en halve, to tredjedele. end matrix
37|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinantthe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end determinant
38det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrixthe determinant of the 2 by 2 matrix. Row 1: en halve, to tredjedele Row 2: tre fjerdedele, en femtedel. end matrix

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Vector.

0(123)the 3 by 1 column vector. 1, 2, 3the 3 by 1 column vector. 1, 2, 3
1[123]the 3 by 1 column vector. 1, 2, 3the 3 by 1 column vector. 1, 2, 3
2(35)the 1 by 2 row vector. 3, 5the 1 by 2 row vector. 3, 5
3[35]the 1 by 2 row vector. 3, 5the 1 by 2 row vector. 3, 5
4(x+1x1)the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1the 2 by 1 column vector. Row 1: x plustegn 1 Row 2: x minustegn 1
5(3612)the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2
6(x+12x)the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 xthe 1 by 2 row vector. Column 1: x plustegn 1 Column 2: 2 x
7(32)(0594)the 1 by 2 row vector. 3, 2. times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4the 1 by 2 row vector. 3, 2. the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4
8(127)(354806142)the 1 by 3 row vector. 1, 2, 7. times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2the 1 by 3 row vector. 1, 2, 7. the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2
9(0594)(32)the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. times the 2 by 1 column vector. 3, 2the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. the 2 by 1 column vector. 3, 2
10(354806142)(127)the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. times the 3 by 1 column vector. 1, 2, 7the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. the 3 by 1 column vector. 1, 2, 7

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_EndVector.

0(123)the 3 by 1 column vector. 1, 2, 3. end vectorthe 3 by 1 column vector. 1, 2, 3. end vector
1[123]the 3 by 1 column vector. 1, 2, 3. end vectorthe 3 by 1 column vector. 1, 2, 3. end vector
2(35)the 1 by 2 row vector. 3, 5. end vectorthe 1 by 2 row vector. 3, 5. end vector
3[35]the 1 by 2 row vector. 3, 5. end vectorthe 1 by 2 row vector. 3, 5. end vector
4(x+1x1)the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1. end vectorthe 2 by 1 column vector. Row 1: x plustegn 1 Row 2: x minustegn 1. end vector
5(3612)the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vectorthe 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vector
6(x+12x)the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x. end vectorthe 1 by 2 row vector. Column 1: x plustegn 1 Column 2: 2 x. end vector
7(32)(0594)the 1 by 2 row vector. 3, 2. end vector times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrixthe 1 by 2 row vector. 3, 2. end vector the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix
8(127)(354806142)the 1 by 3 row vector. 1, 2, 7. end vector times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrixthe 1 by 3 row vector. 1, 2, 7. end vector the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix
9(0594)(32)the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix times the 2 by 1 column vector. 3, 2. end vectorthe 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix the 2 by 1 column vector. 3, 2. end vector
10(354806142)(127)the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix times the 3 by 1 column vector. 1, 2, 7. end vectorthe 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix the 3 by 1 column vector. 1, 2, 7. end vector

Danish Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: da, Style: Matrix_Combinatoric.

0(nr)n choose rn choose r
1(107)10 choose 710 choose 7
2(150)15 choose 015 choose 0
3(83)8 choose 38 choose 3

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17
1x+y=72x+3y=172 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 172 lines, Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17
2x+y=72x+3y=172 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 172 lines, Line 1: x; plustegn; y; lig med; 7. Line 2: 2 x; plustegn; 3 y; lig med; 17
3Equation 1: x+y=7Equation 2: 2x+3y=172 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 172 lines, Line 1: Equation 1 kolon x plustegn y lig med 7. Line 2: Equation 2 kolon 2 x, plustegn 3 y, lig med 17
4Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 172 lines, Line 1: Equation 1 kolon; x plustegn y lig med 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y, lig med 17
5Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 172 lines, Line 1: Equation 1 kolon; x plustegn y; lig med; 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y; lig med; 17
64x+3y+2z=172x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 13 lines, Line 1: 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: 3 x, plustegn 2 y, plustegn 5 z, lig med 1
74x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 13 lines, Line 1: 4 x; plustegn; 3 y; plustegn; 2 z; lig med; 1. Line 2: 2 x; plustegn; 4 y; plustegn; 6 z; lig med; 6. Line 3: 3 x; plustegn; 2 y; plustegn; 5 z; lig med; 1
8Equation 1: 4x+3y+2z=17Equation 2: 2x+4y+6z=6Equation 3: 3x+2y+5z=13 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 13 lines, Line 1: Equation 1 kolon 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: Equation 2 kolon 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: Equation 3 kolon 3 x, plustegn 2 y, plustegn 5 z, lig med 1
9x0y03x5y303 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 303 lines, Line 1: x større end eller lig med 0. Line 2: y større end eller lig med 0. Line 3: 3 x, minustegn 5 y, mindre end eller lig med 30
103x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x4 lines, Line 1: 3 x, plustegn 8 lig med 5 x. Line 2: 8 lig med 5 x, minustegn 3 x. Line 3: 8 lig med 2 x. Line 4: 4 lig med x
113x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank4 lines, Line 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Line 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Line 3: blank; blank; 8; lig med; 2 x; blank; blank. Line 4: blank; blank; 4; lig med; x; blank; blank
12Step 1: 3x+8=5xStep 2: 8=5x3xStep 3: 8=2xStep 4: 4=x4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x4 lines, Line 1: Step 1 kolon 3 x, plustegn 8 lig med 5 x. Line 2: Step 2 kolon 8 lig med 5 x, minustegn 3 x. Line 3: Step 3 kolon 8 lig med 2 x. Line 4: Step 4 kolon 4 lig med x
13f(x)={x if x<0x  if x0f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0
14f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Case.

0f(x)={x if x<0x  if x0f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0
1f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0
2f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 02 cases, Case 1: f of x, lig med negative x; if x mindre end 0. Case 2: f of x, lig med x; if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Equation.

0x+y=72x+3y=172 equations, Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 172 equations, Equation 1: x plustegn y lig med 7. Equation 2: 2 x, plustegn 3 y, lig med 17
1x+y=72x+3y=172 equations, Equation 1: x plus y; equals; 7. Equation 2: 2 x, plus 3 y; equals; 172 equations, Equation 1: x plustegn y; lig med; 7. Equation 2: 2 x, plustegn 3 y; lig med; 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLinePausesBetweenColumns_Auto:MultiLineOverview_Auto:MultiLineLabel_Line.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Line.

0x+y=72x+3y=172 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 172 lines, Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Row.

0x+y=72x+3y=172 rows, Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 172 rows, Row 1: x plustegn y lig med 7. Row 2: 2 x, plustegn 3 y, lig med 17
1x+y=72x+3y=172 rows, Row 1: x plus y; equals; 7. Row 2: 2 x, plus 3 y; equals; 172 rows, Row 1: x plustegn y; lig med; 7. Row 2: 2 x, plustegn 3 y; lig med; 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Step.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x4 steps, Step 1: 3 x, plustegn 8 lig med 5 x. Step 2: 8 lig med 5 x, minustegn 3 x. Step 3: 8 lig med 2 x. Step 4: 4 lig med x
13x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank4 steps, Step 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Step 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Step 3: blank; blank; 8; lig med; 2 x; blank; blank. Step 4: blank; blank; 4; lig med; x; blank; blank

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Constraint.

0x0y03x5y303 constraints, Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 303 constraints, Constraint 1: x større end eller lig med 0. Constraint 2: y større end eller lig med 0. Constraint 3: 3 x, minustegn 5 y, mindre end eller lig med 30

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_None.

0x0y03x5y303 lines, x is greater than or equal to 0. y is greater than or equal to 0. 3 x, minus 5 y, is less than or equal to 303 lines, x større end eller lig med 0. y større end eller lig med 0. 3 x, minustegn 5 y, mindre end eller lig med 30
13x+8=5x8=5x3x8=2x4=x4 lines, 3 x; plus; 8; equals; 5 x; blank; blank. blank; blank; 8; equals; 5 x; minus; 3 x. blank; blank; 8; equals; 2 x; blank; blank. blank; blank; 4; equals; x; blank; blank4 lines, 3 x; plustegn; 8; lig med; 5 x; blank; blank. blank; blank; 8; lig med; 5 x; minustegn; 3 x. blank; blank; 8; lig med; 2 x; blank; blank. blank; blank; 4; lig med; x; blank; blank
2f(x)={x if x<0x  if x0f of x, equals, 2 cases, negative x if x is less than 0. x if x is greater than or equal to 0f of x, lig med, 2 cases, negative x if x mindre end 0. x if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lines, Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17
1x+y=72x+3y=172 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 172 lines, Line 1: x plustegn y. lig med. 7. Line 2: 2 x, plustegn 3 y. lig med. 17
2x+y=72x+3y=172 lines, Line 1: x. plus. y. equals. 7. Line 2: 2 x. plus. 3 y. equals. 172 lines, Line 1: x. plustegn. y. lig med. 7. Line 2: 2 x. plustegn. 3 y. lig med. 17
3Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon. x plus y equals 7. Line 2: Equation 2 colon. 2 x, plus 3 y, equals 172 lines, Line 1: Equation 1 kolon. x plustegn y lig med 7. Line 2: Equation 2 kolon. 2 x, plustegn 3 y, lig med 17
4Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon. x plus y. equals. 7. Line 2: Equation 2 colon. 2 x, plus 3 y. equals. 172 lines, Line 1: Equation 1 kolon. x plustegn y. lig med. 7. Line 2: Equation 2 kolon. 2 x, plustegn 3 y. lig med. 17
54x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x. plus. 3 y. plus. 2 z. equals. 1. Line 2: 2 x. plus. 4 y. plus. 6 z. equals. 6. Line 3: 3 x. plus. 2 y. plus. 5 z. equals. 13 lines, Line 1: 4 x. plustegn. 3 y. plustegn. 2 z. lig med. 1. Line 2: 2 x. plustegn. 4 y. plustegn. 6 z. lig med. 6. Line 3: 3 x. plustegn. 2 y. plustegn. 5 z. lig med. 1
63x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x. plus. 8. equals. 5 x. blank. blank. Line 2: blank. blank. 8. equals. 5 x. minus. 3 x. Line 3: blank. blank. 8. equals. 2 x. blank. blank. Line 4: blank. blank. 4. equals. x. blank. blank4 lines, Line 1: 3 x. plustegn. 8. lig med. 5 x. blank. blank. Line 2: blank. blank. 8. lig med. 5 x. minustegn. 3 x. Line 3: blank. blank. 8. lig med. 2 x. blank. blank. Line 4: blank. blank. 4. lig med. x. blank. blank
7f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x. if x mindre end 0. Case 2: x. if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x. if x mindre end 0. Case 2: x. if x større end eller lig med 0
1f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x. if x is less than 0. Case 2: f of x, equals x. if x is greater than or equal to 02 cases, Case 1: f of x, lig med negative x. if x mindre end 0. Case 2: f of x, lig med x. if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 equations, Equation 1: x plus y. equals. 7. Equation 2: 2 x, plus 3 y. equals. 172 equations, Equation 1: x plustegn y. lig med. 7. Equation 2: 2 x, plustegn 3 y. lig med. 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 172 lines, Line 1: x plustegn y. lig med. 7. Line 2: 2 x, plustegn 3 y. lig med. 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 rows, Row 1: x plus y. equals. 7. Row 2: 2 x, plus 3 y. equals. 172 rows, Row 1: x plustegn y. lig med. 7. Row 2: 2 x, plustegn 3 y. lig med. 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x. plus. 8. equals. 5 x. blank. blank. Step 2: blank. blank. 8. equals. 5 x. minus. 3 x. Step 3: blank. blank. 8. equals. 2 x. blank. blank. Step 4: blank. blank. 4. equals. x. blank. blank4 steps, Step 1: 3 x. plustegn. 8. lig med. 5 x. blank. blank. Step 2: blank. blank. 8. lig med. 5 x. minustegn. 3 x. Step 3: blank. blank. 8. lig med. 2 x. blank. blank. Step 4: blank. blank. 4. lig med. x. blank. blank

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 172 lines, Line 1: x plustegn y, lig med, 7. Line 2: 2 x, plustegn 3 y, lig med, 17
1x+y=72x+3y=172 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 172 lines, Line 1: x, plustegn, y, lig med, 7. Line 2: 2 x, plustegn, 3 y, lig med, 17
2Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 172 lines, Line 1: Equation 1 kolon, x plustegn y lig med 7. Line 2: Equation 2 kolon, 2 x, plustegn 3 y, lig med 17
3Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 172 lines, Line 1: Equation 1 kolon, x plustegn y, lig med, 7. Line 2: Equation 2 kolon, 2 x, plustegn 3 y, lig med, 17
44x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 13 lines, Line 1: 4 x, plustegn, 3 y, plustegn, 2 z, lig med, 1. Line 2: 2 x, plustegn, 4 y, plustegn, 6 z, lig med, 6. Line 3: 3 x, plustegn, 2 y, plustegn, 5 z, lig med, 1
53x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank4 lines, Line 1: 3 x, plustegn, 8, lig med, 5 x, blank, blank. Line 2: blank, blank, 8, lig med, 5 x, minustegn, 3 x. Line 3: blank, blank, 8, lig med, 2 x, blank, blank. Line 4: blank, blank, 4, lig med, x, blank, blank
6f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x, if x mindre end 0. Case 2: x, if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0f of x, lig med, 2 cases, Case 1: negative x, if x mindre end 0. Case 2: x, if x større end eller lig med 0
1f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 02 cases, Case 1: f of x, lig med negative x, if x mindre end 0. Case 2: f of x, lig med x, if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 equations, Equation 1: x plus y, equals, 7. Equation 2: 2 x, plus 3 y, equals, 172 equations, Equation 1: x plustegn y, lig med, 7. Equation 2: 2 x, plustegn 3 y, lig med, 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 172 lines, Line 1: x plustegn y, lig med, 7. Line 2: 2 x, plustegn 3 y, lig med, 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 rows, Row 1: x plus y, equals, 7. Row 2: 2 x, plus 3 y, equals, 172 rows, Row 1: x plustegn y, lig med, 7. Row 2: 2 x, plustegn 3 y, lig med, 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x, plus, 8, equals, 5 x, blank, blank. Step 2: blank, blank, 8, equals, 5 x, minus, 3 x. Step 3: blank, blank, 8, equals, 2 x, blank, blank. Step 4: blank, blank, 4, equals, x, blank, blank4 steps, Step 1: 3 x, plustegn, 8, lig med, 5 x, blank, blank. Step 2: blank, blank, 8, lig med, 5 x, minustegn, 3 x. Step 3: blank, blank, 8, lig med, 2 x, blank, blank. Step 4: blank, blank, 4, lig med, x, blank, blank

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineOverview_None.

0x+y=72x+3y=17Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17
1x+y=72x+3y=17Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17Line 1: x plustegn y; lig med; 7. Line 2: 2 x, plustegn 3 y; lig med; 17
2x+y=72x+3y=17Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17Line 1: x; plustegn; y; lig med; 7. Line 2: 2 x; plustegn; 3 y; lig med; 17
3Equation 1: x+y=7Equation 2: 2x+3y=17Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17Line 1: Equation 1 kolon x plustegn y lig med 7. Line 2: Equation 2 kolon 2 x, plustegn 3 y, lig med 17
4Equation 1:x+y=7Equation 2:2x+3y=17Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17Line 1: Equation 1 kolon; x plustegn y lig med 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y, lig med 17
5Equation 1:x+y=7Equation 2:2x+3y=17Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17Line 1: Equation 1 kolon; x plustegn y; lig med; 7. Line 2: Equation 2 kolon; 2 x, plustegn 3 y; lig med; 17
64x+3y+2z=172x+4y+6z=63x+2y+5z=1Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1Line 1: 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: 3 x, plustegn 2 y, plustegn 5 z, lig med 1
74x+3y+2z=12x+4y+6z=63x+2y+5z=1Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1Line 1: 4 x; plustegn; 3 y; plustegn; 2 z; lig med; 1. Line 2: 2 x; plustegn; 4 y; plustegn; 6 z; lig med; 6. Line 3: 3 x; plustegn; 2 y; plustegn; 5 z; lig med; 1
8Equation 1: 4x+3y+2z=17Equation 2: 2x+4y+6z=6Equation 3: 3x+2y+5z=1Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1Line 1: Equation 1 kolon 4 x, plustegn 3 y, plustegn 2 z, lig med 17. Line 2: Equation 2 kolon 2 x, plustegn 4 y, plustegn 6 z, lig med 6. Line 3: Equation 3 kolon 3 x, plustegn 2 y, plustegn 5 z, lig med 1
9Step 1: 3x+8=5xStep 2: 8=5x3xStep 3: 8=2xStep 4: 4=xLine 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals xLine 1: Step 1 kolon 3 x, plustegn 8 lig med 5 x. Line 2: Step 2 kolon 8 lig med 5 x, minustegn 3 x. Line 3: Step 3 kolon 8 lig med 2 x. Line 4: Step 4 kolon 4 lig med x
10f(x)={x if x<0x  if x0f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f of x, lig med, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0
11f(x)={xif x<0xif x0f of x, equals, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f of x, lig med, Case 1: negative x; if x mindre end 0. Case 2: x; if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Case:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0f(x)={x if x<0x  if x0f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f of x, lig med, Case 1: negative x if x mindre end 0. Case 2: x if x større end eller lig med 0
1f(x)=xif x<0f(x)=xif x0Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0Case 1: f of x, lig med negative x; if x mindre end 0. Case 2: f of x, lig med x; if x større end eller lig med 0

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Equation:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17Equation 1: x plustegn y lig med 7. Equation 2: 2 x, plustegn 3 y, lig med 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Line:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17Line 1: x plustegn y lig med 7. Line 2: 2 x, plustegn 3 y, lig med 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Row:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17Row 1: x plustegn y lig med 7. Row 2: 2 x, plustegn 3 y, lig med 17

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Step:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

03x+8=5x8=5x3x8=2x4=xStep 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals xStep 1: 3 x, plustegn 8 lig med 5 x. Step 2: 8 lig med 5 x, minustegn 3 x. Step 3: 8 lig med 2 x. Step 4: 4 lig med x
13x+8=5x8=5x3x8=2x4=xStep 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blankStep 1: 3 x; plustegn; 8; lig med; 5 x; blank; blank. Step 2: blank; blank; 8; lig med; 5 x; minustegn; 3 x. Step 3: blank; blank; 8; lig med; 2 x; blank; blank. Step 4: blank; blank; 4; lig med; x; blank; blank

Danish Clearspeak MultiLineEntries rule tests. Locale: da, Style: MultiLineLabel_Constraint:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x0y03x5y30Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30Constraint 1: x større end eller lig med 0. Constraint 2: y større end eller lig med 0. Constraint 3: 3 x, minustegn 5 y, mindre end eller lig med 30

Danish Clearspeak NamedSets rule tests. Locale: da, Style: Verbose.

0the real numbersthe real numbers
1Rthe real numbersthe real numbers
2the complex numbersthe complex numbers
3Cthe complex numbersthe complex numbers
4the integersthe integers
5Zthe integersthe integers
6the rational numbersthe rational numbers
7Qthe rational numbersthe rational numbers
8the natural numbersthe natural numbers
9Nthe natural numbersthe natural numbers
100the natural numbers with zerothe natural numbers with zero
11N0the natural numbers with zerothe natural numbers with zero
12+the positive integersthe positive integers
13Z+the positive integersthe positive integers
14-the negative integersthe negative integers
15Z-the negative integersthe negative integers
162r-twor-to
17R2r-twor-to
183z-threez-tre
19Z3z-threez-tre
20nc-nc-n
21Cnc-nc-n
22r-infinityr-uendelig
23Rr-infinityr-uendelig

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Auto.

0(25)2525
1(2x)2 x2 x
22+(2)2 plus negative 22 plustegn negative 2
32(2)2 minus negative 22 minustegn negative 2
4222 minus negative 22 minustegn negative 2
52(2)32 minus, open paren, negative 2, close paren, cubed2 minustegn, venstre parantes, negative 2, højre parantes, cubed
6(2x)2open paren, 2 x, close paren, squaredvenstre parantes, 2 x, højre parantes, squared
7(2x)y+1open paren, 2 x, close paren, raised to the y plus 1 powervenstre parantes, 2 x, højre parantes, raised to the y plustegn 1 power
8(2x)negative 2 xnegative 2 x
9(2x)2open paren, negative 2 x, close paren, squaredvenstre parantes, negative 2 x, højre parantes, squared
10(2x)2negative, open paren, 2 x, close paren, squarednegative, venstre parantes, 2 x, højre parantes, squared
11(12)one halfen halve
12(34x)three fourths xtre fjerdedele x
13(1122)open paren, 11 over 22, close parenvenstre parantes, 11 over 22, højre parantes
14(12)4one half to the fourth poweren halve to the fjerde power
15(1115)2open paren, 11 over 15, close paren, squaredvenstre parantes, 11 over 15, højre parantes, squared

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Speak.

0(25)open paren, 25, close parenvenstre parantes, 25, højre parantes
1(2x)open paren, 2 x, close parenvenstre parantes, 2 x, højre parantes
22+(2)2 plus, open paren, negative 2, close paren2 plustegn, venstre parantes, negative 2, højre parantes
32(2)2 minus, open paren, negative 2, close paren2 minustegn, venstre parantes, negative 2, højre parantes
42(2)32 minus, open paren, negative 2, close paren, cubed2 minustegn, venstre parantes, negative 2, højre parantes, cubed
5(2x)2open paren, 2 x, close paren, squaredvenstre parantes, 2 x, højre parantes, squared
6(2x)y+1open paren, 2 x, close paren, raised to the y plus 1 powervenstre parantes, 2 x, højre parantes, raised to the y plustegn 1 power
7(2x)open paren, negative 2 x, close parenvenstre parantes, negative 2 x, højre parantes
8(2x)2open paren, negative 2 x, close paren, squaredvenstre parantes, negative 2 x, højre parantes, squared
9(2x)2negative, open paren, 2 x, close paren, squarednegative, venstre parantes, 2 x, højre parantes, squared
10(12)open paren, one half, close parenvenstre parantes, en halve, højre parantes
11(34x)open paren, three fourths x, close parenvenstre parantes, tre fjerdedele x, højre parantes
12(1122)open paren, 11 over 22, close parenvenstre parantes, 11 over 22, højre parantes
13(12)4open paren, one half, close paren, to the fourth powervenstre parantes, en halve, højre parantes, to the fjerde power
14(1115)2open paren, 11 over 15, close paren, squaredvenstre parantes, 11 over 15, højre parantes, squared

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_CoordPoint.

0(1,2)the point with coordinates 1 comma 2the point with coordinates 1 komma 2
1(x,y)the point with coordinates x comma ythe point with coordinates x komma y
2(1,2,3)the point with coordinates 1 comma 2 comma 3the point with coordinates 1 komma 2 komma 3
3(x,y,z)the point with coordinates x comma y comma zthe point with coordinates x komma y komma z
4(1,2,386)the point with coordinates 1 comma 2 comma 386the point with coordinates 1 komma 2 komma 386

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Interval.

0(a,b)the interval from a to b, not including a or bthe interval from a to b, not including a or b
1(0,1)the interval from 0 to 1, not including 0 or 1the interval from 0 to 1, not including 0 or 1
2[a,b)the interval from a to b, including a, but not including bthe interval from a to b, including a, but not including b
3[0,1)the interval from 0 to 1, including 0, but not including 1the interval from 0 to 1, including 0, but not including 1
4(a,b]the interval from a to b, not including a, but including bthe interval from a to b, not including a, but including b
5(0,1]the interval from 0 to 1, not including 0, but including 1the interval from 0 to 1, not including 0, but including 1
6[a,b]the interval from a to b, including a and bthe interval from a to b, including a and b
7[0,1]the interval from 0 to 1, including 0 and 1the interval from 0 to 1, including 0 and 1
8(,b)the interval from negative infinity to b, not including bthe interval from negative uendelig to b, not including b
9(,1)the interval from negative infinity to 1, not including 1the interval from negative uendelig to 1, not including 1
10(,b]the interval from negative infinity to b, including bthe interval from negative uendelig to b, including b
11(,1]the interval from negative infinity to 1, including 1the interval from negative uendelig to 1, including 1
12(a,)the interval from a to infinity, not including athe interval from a to uendelig, not including a
13(1,)the interval from 1 to infinity, not including 1the interval from 1 to uendelig, not including 1
14[a,)the interval from a to infinity, including athe interval from a to uendelig, including a
15[1,)the interval from 1 to infinity, including 1the interval from 1 to uendelig, including 1
16(,)the interval from negative infinity to infinitythe interval from negative uendelig to uendelig
17(,+)the interval from negative infinity to positive infinitythe interval from negative uendelig to positive uendelig

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_SpeakNestingLevel.

0f(g(x))f of, g of xf of, g of x
1f(g(x+1))f of, open paren, g of, open paren, x plus 1, close paren, close parenf of, venstre parantes, g of, venstre parantes, x plustegn 1, højre parantes, højre parantes
26[2(3+5)]6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket6 minustegn, kantet venstreparentes, 2 minustegn, venstre parantes, 3 plustegn 5, højre parantes, kantet højreparentes
36(2(3+5))6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren6 minustegn, venstre parantes, 2 minustegn, anden venstre parantes, 3 plustegn 5, anden højre parantes, højre parantes
44[x+3(2x+1)]4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket4 , kantet venstreparentes, x plustegn 3 , venstre parantes, 2 x, plustegn 1, højre parantes, kantet højreparentes
54(x+3(2x+1))4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren4 , venstre parantes, x plustegn 3 , anden venstre parantes, 2 x, plustegn 1, anden højre parantes, højre parantes
61+(2+(3+7)(2+8))1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren1 plustegn, venstre parantes, 2 plustegn, anden venstre parantes, 3 plustegn 7, anden højre parantes, minustegn, anden venstre parantes, 2 plustegn 8, anden højre parantes, højre parantes
71+(2+(3(45)))1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren1 plustegn, venstre parantes, 2 plustegn, anden venstre parantes, 3 minustegn, tredje venstre parantes, 4 minustegn 5, tredje højre parantes, anden højre parantes, højre parantes
8((2+(3+4)+5)+6+((7+(8+1))+2))open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close parenvenstre parantes, anden venstre parantes, 2 plustegn, tredje venstre parantes, 3 plustegn 4, tredje højre parantes, plustegn 5, anden højre parantes, plustegn 6 plustegn, anden venstre parantes, tredje venstre parantes, 7 plustegn, fjerde venstre parantes, 8 plustegn 1, fjerde højre parantes, tredje højre parantes, plustegn 2, anden højre parantes, højre parantes

Danish Clearspeak Parentheses rule tests. Locale: da, Style: Paren_Silent.

0(25)2525
1(2x)2 x2 x
22+(2)2 plus, negative 22 plustegn, negative 2
32(2)2 minus, negative 22 minustegn, negative 2
42(2)32 minus, negative 2, cubed2 minustegn, negative 2, cubed
5(2x)22 x, squared2 x, squared
6(2x)y+12 x, raised to the y plus 1 power2 x, raised to the y plustegn 1 power
7(2x)negative 2 xnegative 2 x
8(2x)2negative 2 x, squarednegative 2 x, squared
9(2x)2negative, 2 x, squarednegative, 2 x, squared
10(12)one halfen halve
11(34x)three fourths xtre fjerdedele x
12(1122)11 over 2211 over 22
13(12)4one half, to the fourth poweren halve, to the fjerde power
14(1115)211 over 15, squared11 over 15, squared

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_Auto.

06×86 times 86 krydsprodukt 8
1m×nm times nm krydsprodukt n
23×33 times 33 krydsprodukt 3

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_By.

06×86 by 86 krydsprodukt 8
1m×nm by nm krydsprodukt n
23×33 by 33 krydsprodukt 3

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolX_Cross.

0u×vu cross vu krydsprodukt v

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolDot_Auto.

0686 times 86 prik 8
1mnm times nm prik n
2333 times 33 prik 3

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: MultsymbolDot_Dot.

0686 dot 86 prik 8
1mnm dot nm prik n
2333 dot 33 prik 3

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: TriangleSymbol_Auto.

0ΔABCtriangle A B Ctrekant A B C
1ΔDEFtriangle D E Ftrekant D E F

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: TriangleSymbol_Delta.

0ΔxDelta xDelta x
1f(x+Δx)f of, open paren, x plus Delta x, close parenf of, venstre parantes, x plustegn Delta x, højre parantes

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Ellipses_Auto.

01,2,3,1 comma 2 comma 3 comma dot dot dot1 komma 2 komma 3 komma prik prik prik
11,2,3,,201 comma 2 comma 3 comma dot dot dot comma 201 komma 2 komma 3 komma prik prik prik komma 20
2,2,1,0,1,2,dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dotprik prik prik komma, negative 2, komma, negative 1, komma 0 komma 1 komma 2 komma prik prik prik

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Ellipses_AndSoOn.

01,2,3,1 comma 2 comma 3 comma and so on1 komma 2 komma 3 komma and so on
11,2,3,,201 comma 2 comma 3 comma and so on up to comma 201 komma 2 komma 3 komma and so on up to komma 20
2,2,1,0,1,2,dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dotprik prik prik komma, negative 2, komma, negative 1, komma 0 komma 1 komma 2 komma prik prik prik

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Auto.

03|63 divides 63 divides 6
1{x|x>0}the set of all x such that x is greater than 0the set of all x such that x større end 0
2{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2the set of all x such that, the absolute value of x, større end 2
3f(x)|x=5f of x, evaluated at x equals 5f of x, evaluated at x lig med 5
4x2+2x|x=2x squared plus 2 x, evaluated at x equals 2x squared plustegn 2 x, evaluated at x lig med 2
5x2+x|01x squared plus x, evaluated at 1, minus the same expression evaluated at 0x squared plustegn x, evaluated at 1, minus the same expression evaluated at 0

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_SuchThat.

0{x|x>0}the set of all x such that x is greater than 0the set of all x such that x større end 0

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Divides.

03|63 divides 63 divides 6

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: VerticalLine_Given.

0P(A|B)P of, open paren, A given B, close parenP of, venstre parantes, A given B, højre parantes

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Auto.

0If x then 2x is an even number.If x is a member of the integers then 2 x, is an even number periodIf x is a member of the integers then 2 x, is an even number prik
1{x|x>5}the set of all x in the integers such that x is greater than 5the set of all x in the integers such that x større end 5
23+2i3 plus 2 i, is not a member of the real numbers3 plustegn 2 I, is not a member of the real numbers

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Member.

0If x then 2x is an even number.If x is a member of the integers then 2 x, is an even number periodIf x is a member of the integers then 2 x, is an even number prik
1{x|x>5}the set of all x member of the integers such that x is greater than 5the set of all x member of the integers such that x større end 5
23+2i3 plus 2 i, is not a member of the real numbers3 plustegn 2 I, is not a member of the real numbers

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Element.

0If x then 2x is an even number.If x is an element of the integers then 2 x, is an even number periodIf x is an element of the integers then 2 x, is an even number prik
1{x|x>5}the set of all x element of the integers such that x is greater than 5the set of all x element of the integers such that x større end 5
23+2i3 plus 2 i, is not an element of the real numbers3 plustegn 2 I, is not an element of the real numbers

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: SetMemberSymbol_Belongs.

0If x then 2x is an even number.If x belongs to the integers then 2 x, is an even number periodIf x belongs to the integers then 2 x, is an even number prik
1{x|x>5}the set of all x belonging to the integers such that x is greater than 5the set of all x belonging to the integers such that x større end 5
23+2i3 plus 2 i, does not belong to the real numbers3 plustegn 2 I, does not belong to the real numbers
3If x then 2x is an even number.If x belongs to the integers then 2 x, is an even number periodIf x belongs to the integers then 2 x, is an even number prik
4{x|x>5}the set of all x belonging to the integers such that x is greater than 5the set of all x belonging to the integers such that x større end 5
53+2i3 plus 2 i, does not belong to the real numbers3 plustegn 2 I, does not belong to the real numbers

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Sets_woAll:SetMemberSymbol_Belongs.

0{x:2<x<7}the set of x belonging to the integers such that 2 is less than x is less than 7the set of x belonging to the integers such that 2 mindre end x mindre end 7

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Sets_woAll:SetMemberSymbol_Member.

0{x|x>5}the set of x member of the integers such that x is greater than 5the set of x member of the integers such that x større end 5

Danish Clearspeak Part2Symbols rule tests. Locale: da, Style: Verbose.

0n=110nthe sum from n equals 1 to 10 of nthe sum from n lig med 1 to 10 of n
1n=1nthe sum from n equals 1 to infinity of nthe sum from n lig med 1 to uendelig of n
2i+ithe sum over i is a member of the positive integers, of ithe sum over I is a member of the positive integers, of I
3Sithe sum over S, of ithe sum over S, of I
4aithe sum of, a sub ithe sum of, a sub I
5i=110ithe product from i equals 1 to 10 of ithe produkt from I lig med 1 to 10 of I
6i+ii+1the product over i is a member of the positive integers, of, the fraction with numerator i, and denominator i plus 1the produkt over I is a member of the positive integers, of, the fraction with numerator I, and denominator I plustegn 1
7+ii+1the product over the positive integers, of, the fraction with numerator i, and denominator i plus 1the produkt over the positive integers, of, the fraction with numerator I, and denominator I plustegn 1
8aithe product of, a sub ithe produkt of, a sub I
9i=110Sithe intersection from i equals 1 to 10 of, S sub ithe snit from I lig med 1 to 10 of, S sub I
10i=110Sithe union from i equals 1 to 10 of, S sub ithe forening from I lig med 1 to 10 of, S sub I
11Sithe intersection of, S sub ithe snit of, S sub I
12Sithe union of, S sub ithe forening of, S sub I
13CSithe intersection over C, of, S sub ithe snit over C, of, S sub I
14CSithe union over C, of, S sub ithe forening over C, of, S sub I
15f(x)dxthe integral of f of x, d xthe integral of f of x, d x
1601f(x)dxthe integral from 0 to 1 of f of x, d xthe integral from 0 to 1 of f of x, d x
17f(x)dxthe integral over the real numbers, of f of x, d xthe integral over the real numbers, of f of x, d x

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Auto.

0ABA prime, B primeA mærke, B mærke
1ABA double prime, B double primeA dobbelt mærke, B dobbelt mærke
2ABA triple prime, B triple primeA trippel mærke, B trippel mærke
3f(x)f prime of xf mærke of x
4f(x)f double prime of xf dobbelt mærke of x
5f(x)f triple prime of xf trippel mærke of x
611 foot1 fod
722 feet2 fod
811 inch1 tomme
922 inches2 tommer
10161016 feet, 10 inches16 fod, 10 tommer
1145°1045 degrees, 10 minutes45 grader, 10 minutter
12x°yx degrees, y minutesx grader, y minutter
1345°102545 degrees, 10 minutes, 25 seconds45 grader, 10 minutter, 25 sekunder
14x°yzx degrees, y minutes, z secondsx grader, y minutter, z sekunder

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Angle.

011 minute1 minut
1xx minutesx minutter
222 minutes2 minutter
311 second1 sekund
4xx secondsx sekunder
522 seconds2 sekunder
6161016 minutes, 10 seconds16 minutter, 10 sekunder
7xyx minutes, y secondsx minutter, y sekunder
845°1045 degrees, 10 minutes45 grader, 10 minutter
945°102545 degrees, 10 minutes, 25 seconds45 grader, 10 minutter, 25 sekunder
10ABA prime, B primeA mærke, B mærke
11ABA double prime, B double primeA dobbelt mærke, B dobbelt mærke
12ABA triple prime, B triple primeA trippel mærke, B trippel mærke
13f(x)f prime of xf mærke of x
14f(x)f double prime of xf dobbelt mærke of x
15f(x)f triple prime of xf trippel mærke of x

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Prime_Length.

011 foot1 fod
1xx feetx fod
222 feet2 fod
311 inch1 tomme
4xx inchesx tommer
522 inches2 tommer
6161016 feet, 10 inches16 fod, 10 tommer
7xyx feet, y inchesx fod, y tommer
845°1045 degrees, 10 minutes45 grader, 10 minutter
945°102545 degrees, 10 minutes, 25 seconds45 grader, 10 minutter, 25 sekunder
10ABA prime, B primeA mærke, B mærke
11ABA double prime, B double primeA dobbelt mærke, B dobbelt mærke
12ABA triple prime, B triple primeA trippel mærke, B trippel mærke
13f(x)f prime of xf mærke of x
14f(x)f double prime of xf dobbelt mærke of x
15f(x)f triple prime of xf trippel mærke of x

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: CombinationPermutation_Auto.

0Crnn C rn C r
1Prnn P rn P r
2C31010 C 310 C 3
3P31010 P 310 P 3

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: CombinationPermutation_ChoosePermute.

0Crnn choose rn choose r
1Prnn permute rn permute r
2C31010 choose 310 choose 3
3P31010 permute 310 permute 3

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Bar_Auto.

0f¯f barf streg over
1f¯(x)f bar of xf streg over of x
2f1¯f sub 1, barf sub 1, streg over
3f1¯(x)f sub 1, bar of xf sub 1, streg over of x
4z¯z barz streg over
50.3¯the repeating decimal 0 point followed by repeating digit 3the repeating decimal 0 point followed by repeating digit 3
60.12¯the repeating decimal 0 point followed by repeating digits 1 2the repeating decimal 0 point followed by repeating digits 1 2
72.134¯the repeating decimal 2 point followed by repeating digits 1 3 4the repeating decimal 2 point followed by repeating digits 1 3 4
8.13467¯the repeating decimal point 1 3 followed by repeating digits 4 6 7the repeating decimal point 1 3 followed by repeating digits 4 6 7
925.12632¯the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2
10zz¯z, z barz, z streg over
11CD¯the line segment C Dthe line segment C D
12CD¯the line segment C prime D primethe line segment C mærke D mærke
13CD¯the line segment C double prime D double primethe line segment C dobbelt mærke D dobbelt mærke
14CD¯the line segment C triple prime D triple primethe line segment C trippel mærke D trippel mærke
15=defis defined to beis defined to be
16(fg)(x)=deff(g(x))open paren, f composed with g, close paren, of x, is defined to be, f of, g of xvenstre parantes, f komposition stjerne g, højre parantes, of x, is defined to be, f of, g of x
17=?equals sign with question mark over itlig med sign with spørgsmålstegn over it
18x+2=?4x plus 2 equals sign with question mark over it 4x plustegn 2 lig med sign with spørgsmålstegn over it 4

Danish Clearspeak Part3Adornments rule tests. Locale: da, Style: Bar_Conjugate.

0z¯the complex conjugate of zthe complex conjugate of z
1zz¯z, the complex conjugate of zz, the complex conjugate of z
232i¯=3+2ithe complex conjugate of 3 minus 2 i, equals 3 plus 2 ithe complex conjugate of 3 minustegn 2 I, lig med 3 plustegn 2 I
30.3¯the repeating decimal 0 point followed by repeating digit 3the repeating decimal 0 point followed by repeating digit 3
40.12¯the repeating decimal 0 point followed by repeating digits 1 2the repeating decimal 0 point followed by repeating digits 1 2
52.134¯the repeating decimal 2 point followed by repeating digits 1 3 4the repeating decimal 2 point followed by repeating digits 1 3 4
6.13467¯the repeating decimal point 1 3 followed by repeating digits 4 6 7the repeating decimal point 1 3 followed by repeating digits 4 6 7
725.12632¯the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2

Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_Auto.

02the square root of 2the square root of 2
13+23 plus the square root of 23 plustegn the square root of 2
23±23 plus or minus the square root of 23 plus minus the square root of 2
3323 minus or plus the square root of 23 minus plus the square root of 2
42the negative square root of 2the negative square root of 2
5323 minus the square root of 23 minustegn the square root of 2
63+23 plus the negative square root of 23 plustegn the negative square root of 2
7323 minus the negative square root of 23 minustegn the negative square root of 2
83+(2)3 plus, open paren, the negative square root of 2, close paren3 plustegn, venstre parantes, the negative square root of 2, højre parantes
93(2)3 minus, open paren, the negative square root of 2, close paren3 minustegn, venstre parantes, the negative square root of 2, højre parantes
10x+1the square root of x plus 1the square root of x plustegn 1
11x+1the square root of x, plus 1the square root of x, plustegn 1
12xthe negative square root of xthe negative square root of x
13(x)2open paren, the square root of x, close paren, squaredvenstre parantes, the square root of x, højre parantes, squared
14(x)2negative, open paren, the square root of x, close paren, squarednegative, venstre parantes, the square root of x, højre parantes, squared
15x2the square root of x, squaredthe square root of x, squared
16x2the square root of x squaredthe square root of x squared
17x2+y2the square root of x squared plus y squaredthe square root of x squared plustegn y squared
18x12+x22the square root of, x sub 1, squared plus, x sub 2, squaredthe square root of, x sub 1, squared plustegn, x sub 2, squared
19(x2x1)2+(y2y1)2the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squaredthe square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared
2012the square root of one halfthe square root of en halve
212366the square root of, 23 over 66the square root of, 23 over 66
22x+12x+5the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5the square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 athe fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, and denominator 2 a
24y3the cube root of ythe cube root of y
25n4the fourth root of nthe fjerde root of n
26355the fifth root of 35the femte root of 35
271469the ninth root of 146the niende root of 146
28dnthe n-th root of dthe n-th root of d
29243mthe m-th root of 243the m-th root of 243
302iithe i-th root of 2 to the i-th powerthe I-th root of 2 to the I-th power
31125jthe j-th root of 125the j-th root of 125
32y3negative the cube root of ynegative the cube root of y
33n4negative the fourth root of nnegative the fjerde root of n

Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_PosNegSqRoot.

02the positive square root of 2the positive square root of 2
13+23 plus the positive square root of 23 plustegn the positive square root of 2
23±23 plus or minus the square root of 23 plus minus the square root of 2
3323 minus or plus the square root of 23 minus plus the square root of 2
42the negative square root of 2the negative square root of 2
5323 minus the positive square root of 23 minustegn the positive square root of 2
63+23 plus the negative square root of 23 plustegn the negative square root of 2
7323 minus the negative square root of 23 minustegn the negative square root of 2
83+(2)3 plus, open paren, the negative square root of 2, close paren3 plustegn, venstre parantes, the negative square root of 2, højre parantes
93(2)3 minus, open paren, the negative square root of 2, close paren3 minustegn, venstre parantes, the negative square root of 2, højre parantes
10x+1the positive square root of x plus 1the positive square root of x plustegn 1
11x+1the positive square root of x, plus 1the positive square root of x, plustegn 1
12xthe negative square root of xthe negative square root of x
13(x)2open paren, the positive square root of x, close paren, squaredvenstre parantes, the positive square root of x, højre parantes, squared
14(x)2open paren, the negative square root of x, close paren, squaredvenstre parantes, the negative square root of x, højre parantes, squared
15(x)2negative, open paren, the positive square root of x, close paren, squarednegative, venstre parantes, the positive square root of x, højre parantes, squared
16x2the positive square root of x, squaredthe positive square root of x, squared
17x2the positive square root of x squaredthe positive square root of x squared
18x2+y2the positive square root of x squared plus y squaredthe positive square root of x squared plustegn y squared
19x12+x22the positive square root of, x sub 1, squared plus, x sub 2, squaredthe positive square root of, x sub 1, squared plustegn, x sub 2, squared
20(x2x1)2+(y2y1)2the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squaredthe positive square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared
2112the positive square root of one halfthe positive square root of en halve
222366the positive square root of, 23 over 66the positive square root of, 23 over 66
23x+12x+5the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5the positive square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5
24b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 athe fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, and denominator 2 a
25y3the cube root of ythe cube root of y
26n4the fourth root of nthe fjerde root of n
27355the fifth root of 35the femte root of 35
281469the ninth root of 146the niende root of 146
29dnthe n-th root of dthe n-th root of d
30243mthe m-th root of 243the m-th root of 243
312iithe i-th root of 2 to the i-th powerthe I-th root of 2 to the I-th power
32125jthe j-th root of 125the j-th root of 125
33y3negative the cube root of ynegative the cube root of y
34n4negative the fourth root of nnegative the fjerde root of n

Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_RootEnd.

02the square root of 2, end rootthe square root of 2, end root
13+23 plus the square root of 2, end root3 plustegn the square root of 2, end root
23±23 plus or minus the square root of 2, end root3 plus minus the square root of 2, end root
3323 minus or plus the square root of 2, end root3 minus plus the square root of 2, end root
42the negative square root of 2, end rootthe negative square root of 2, end root
5323 minus the square root of 2, end root3 minustegn the square root of 2, end root
63+23 plus the negative square root of 2, end root3 plustegn the negative square root of 2, end root
7323 minus the negative square root of 2, end root3 minustegn the negative square root of 2, end root
83+(2)3 plus, open paren, the negative square root of 2, end root, close paren3 plustegn, venstre parantes, the negative square root of 2, end root, højre parantes
93(2)3 minus, open paren, the negative square root of 2, end root, close paren3 minustegn, venstre parantes, the negative square root of 2, end root, højre parantes
10x+1the square root of x plus 1, end rootthe square root of x plustegn 1, end root
11x+1the square root of x, end root, plus 1the square root of x, end root, plustegn 1
12xthe negative square root of x, end rootthe negative square root of x, end root
13(x)2open paren, the square root of x, end root, close paren, squaredvenstre parantes, the square root of x, end root, højre parantes, squared
14(x)2negative, open paren, the square root of x, end root, close paren, squarednegative, venstre parantes, the square root of x, end root, højre parantes, squared
15x2the square root of x, end root, squaredthe square root of x, end root, squared
16x2the square root of x squared, end rootthe square root of x squared, end root
17x2+y2the square root of x squared plus y squared, end rootthe square root of x squared plustegn y squared, end root
18x12+x22the square root of, x sub 1, squared plus, x sub 2, squared, end rootthe square root of, x sub 1, squared plustegn, x sub 2, squared, end root
19(x2x1)2+(y2y1)2the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end rootthe square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared, end root
2012the square root of one half, end rootthe square root of en halve, end root
212366the square root of, 23 over 66, end rootthe square root of, 23 over 66, end root
22x+12x+5the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end rootthe square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5, end root
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 athe fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, end root, and denominator 2 a
24y3the cube root of y, end rootthe cube root of y, end root
25n4the fourth root of n, end rootthe fjerde root of n, end root
26355the fifth root of 35, end rootthe femte root of 35, end root
271469the ninth root of 146, end rootthe niende root of 146, end root
28dnthe n-th root of d, end rootthe n-th root of d, end root
29243mthe m-th root of 243, end rootthe m-th root of 243, end root
302iithe i-th root of 2 to the i-th power, end rootthe I-th root of 2 to the I-th power, end root
31125jthe j-th root of 125, end rootthe j-th root of 125, end root
32y3negative the cube root of y, end rootnegative the cube root of y, end root
33n4negative the fourth root of n, end rootnegative the fjerde root of n, end root

Danish Clearspeak Roots rule tests. Locale: da, Style: Roots_PosNegSqRootEnd.

02the positive square root of 2, end rootthe positive square root of 2, end root
13+23 plus the positive square root of 2, end root3 plustegn the positive square root of 2, end root
23±23 plus or minus the square root of 2, end root3 plus minus the square root of 2, end root
3323 minus or plus the square root of 2, end root3 minus plus the square root of 2, end root
42the negative square root of 2, end rootthe negative square root of 2, end root
5323 minus the positive square root of 2, end root3 minustegn the positive square root of 2, end root
63+23 plus the negative square root of 2, end root3 plustegn the negative square root of 2, end root
7323 minus the negative square root of 2, end root3 minustegn the negative square root of 2, end root
83+(2)3 plus, open paren, the negative square root of 2, end root, close paren3 plustegn, venstre parantes, the negative square root of 2, end root, højre parantes
93(2)3 minus, open paren, the negative square root of 2, end root, close paren3 minustegn, venstre parantes, the negative square root of 2, end root, højre parantes
10x+1the positive square root of x plus 1, end rootthe positive square root of x plustegn 1, end root
11x+1the positive square root of x, end root, plus 1the positive square root of x, end root, plustegn 1
12xthe negative square root of x, end rootthe negative square root of x, end root
13(x)2open paren, the positive square root of x, end root, close paren, squaredvenstre parantes, the positive square root of x, end root, højre parantes, squared
14(x)2open paren, the negative square root of x, end root, close paren, squaredvenstre parantes, the negative square root of x, end root, højre parantes, squared
15x2the positive square root of x, end root, squaredthe positive square root of x, end root, squared
16x2the positive square root of x squared, end rootthe positive square root of x squared, end root
17x2+y2the positive square root of x squared plus y squared, end rootthe positive square root of x squared plustegn y squared, end root
18x12+x22the positive square root of, x sub 1, squared plus, x sub 2, squared, end rootthe positive square root of, x sub 1, squared plustegn, x sub 2, squared, end root
19(x2x1)2+(y2y1)2the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end rootthe positive square root of, venstre parantes, x sub 2, minustegn, x sub 1, højre parantes, squared plustegn, venstre parantes, y sub 2, minustegn, y sub 1, højre parantes, squared, end root
2012the positive square root of one half, end rootthe positive square root of en halve, end root
212366the positive square root of, 23 over 66, end rootthe positive square root of, 23 over 66, end root
22x+12x+5the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end rootthe positive square root of, the fraction with numerator x plustegn 1, and denominator 2 x, plustegn 5, end root
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 athe fraction with numerator negative b plus minus the square root of b squared minustegn 4 a c, end root, and denominator 2 a
24y3the cube root of y, end rootthe cube root of y, end root
25n4the fourth root of n, end rootthe fjerde root of n, end root
26355the fifth root of 35, end rootthe femte root of 35, end root
271469the ninth root of 146, end rootthe niende root of 146, end root
28dnthe n-th root of d, end rootthe n-th root of d, end root
29243mthe m-th root of 243, end rootthe m-th root of 243, end root
302iithe i-th root of 2 to the i-th power, end rootthe I-th root of 2 to the I-th power, end root
31125jthe j-th root of 125, end rootthe j-th root of 125, end root
32y3negative the cube root of y, end rootnegative the cube root of y, end root
33n4negative the fourth root of n, end rootnegative the fjerde root of n, end root

Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_Auto.

0{x|2<x<7}the set of all x in the integers such that 2 is less than x is less than 7the set of all x in the integers such that 2 mindre end x mindre end 7
1{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2the set of all x such that, the absolute value of x, større end 2
2{x:2<x<7}the set of all x in the integers such that 2 is less than x is less than 7the set of all x in the integers such that 2 mindre end x mindre end 7
3{x:x is an even number}the set of all x in the natural numbers such that x is an even numberthe set of all x in the natural numbers such that x is an even number
4{1,2,3}the set 1 comma 2 comma 3the set 1 komma 2 komma 3
5{1,112,1,253}the set 1 comma 112 comma 1 comma 253the set 1 komma 112 komma 1 komma 253

Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_woAll.

0{x|2<x<7}the set of x in the integers such that 2 is less than x is less than 7the set of x in the integers such that 2 mindre end x mindre end 7
1{x||x|>2}the set of x such that, the absolute value of x, is greater than 2the set of x such that, the absolute value of x, større end 2
2{x:2<x<7}the set of x in the integers such that 2 is less than x is less than 7the set of x in the integers such that 2 mindre end x mindre end 7
3{1,2,3}the set 1 comma 2 comma 3the set 1 komma 2 komma 3
4{1,112,1,253}the set 1 comma 112 comma 1 comma 253the set 1 komma 112 komma 1 komma 253

Danish Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: da, Style: Sets_SilentBracket.

0{x|2<x<7}the set of all x in the integers such that 2 is less than x is less than 7the set of all x in the integers such that 2 mindre end x mindre end 7
1{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2the set of all x such that, the absolute value of x, større end 2
2{x:2<x<7}the set of all x in the integers such that 2 is less than x is less than 7the set of all x in the integers such that 2 mindre end x mindre end 7
3{x:x is an even number}the set of all x in the natural numbers such that x is an even numberthe set of all x in the natural numbers such that x is an even number
4{1,2,3}1 comma 2 comma 31 komma 2 komma 3
5{1,112,1,253}1 comma 112 comma 1 comma 2531 komma 112 komma 1 komma 253

Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_Auto.

0sinxsine xsinus x
1cosxcosine xcosinus x
2tanθtangent thetatangens theta
3secθsecant thetasecans theta
4cscxcosecant xcosecans x
5cotxcotangent xcotangens x
6sin2xsine squared xsinus squared x
7cos3xcosine cubed xcosinus cubed x
8tan2xtangent squared xtangens squared x
9sec3xsecant cubed xsecans cubed x
10csc2xcosecant squared xcosecans squared x
11cot2xcotangent squared xcotangens squared x
12sin2πsine 2 pisinus 2 pi
13sin(πk+π2)the sine of, open paren, pi k, plus, pi over 2, close parenthe sinus of, venstre parantes, pi k, plustegn, pi over 2, højre parantes
14cosπ2the cosine of, pi over 2the cosinus of, pi over 2
15sinπ2the sine of, pi over 2the sinus of, pi over 2
16sinπ2sine pi over 2sinus pi over 2
172sinπ2 over sine pi2 over sinus pi
18sinπ23the fraction with numerator, the sine of, pi over 2, and denominator 3the fraction with numerator, the sinus of, pi over 2, and denominator 3
19tan(π)tangent negative pitangens negative pi
20sin(x+π)the sine of, open paren, x plus pi, close parenthe sinus of, venstre parantes, x plustegn pi, højre parantes
21cos(x+π2)the cosine of, open paren, x plus, pi over 2, close parenthe cosinus of, venstre parantes, x plustegn, pi over 2, højre parantes
22cos(π2+x)the cosine of, open paren, pi over 2, plus x, close parenthe cosinus of, venstre parantes, pi over 2, plustegn x, højre parantes
23sin2x+cos2x=1sine squared x, plus, cosine squared x, equals 1sinus squared x, plustegn, cosinus squared x, lig med 1
24sin4xthe fourth power of sine xthe fjerde power of sinus x
25cos5xthe fifth power of cosine xthe femte power of cosinus x
26tannxthe n-th power of tangent xthe n-th power of tangens x
27sinxcosxsine x over cosine xsinus x over cosinus x
28tan35°tangent 35 degreestangens 35 grader
29tan(DEF)the tangent of, open paren, angle D E F, close parenthe tangens of, venstre parantes, vinkel D E F, højre parantes
30tan(D)the tangent of, open paren, angle D, close parenthe tangens of, venstre parantes, vinkel D, højre parantes
31sin(x+y)=sinxcosy+cosxsinythe sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine ythe sinus of, venstre parantes, x plustegn y, højre parantes, lig med, sinus x cosinus y, plustegn, cosinus x sinus y
32cos(x+y)=cosxcosysinxsinythe cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine ythe cosinus of, venstre parantes, x plustegn y, højre parantes, lig med, cosinus x cosinus y, minustegn, sinus x sinus y
33tan(x+y)=tanxtany1tanxtanythe tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent ythe tangens of, venstre parantes, x plustegn y, højre parantes, lig med, the fraction with numerator tangens x minustegn tangens y, and denominator 1 minustegn, tangens x tangens y
34tan(π6+2π3)=tanπ6tan2π31tanπ6tan2π3the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3the tangens of, venstre parantes, pi over 6, plustegn, 2 pi over 3, højre parantes, lig med, the fraction with numerator, the tangens of, pi over 6, minustegn, the tangens of, 2 pi over 3, and denominator 1 minustegn, the tangens of, pi over 6, the tangens of, 2 pi over 3
35tan2x=2tanx1tan2xtangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared xtangens 2 x, lig med, the fraction with numerator 2 tangens x, and denominator 1 minustegn, tangens squared x
36cos2x=2cos2x1cosine 2 x, equals 2, cosine squared x, minus 1cosinus 2 x, lig med 2, cosinus squared x, minustegn 1
37sinx2=±1cosx2the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2the sinus of, x over 2, lig med plus minus the square root of, the fraction with numerator 1 minustegn cosinus x, and denominator 2
38tanx2=±1cosx1+cosxthe tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine xthe tangens of, x over 2, lig med plus minus the square root of, the fraction with numerator 1 minustegn cosinus x, and denominator 1 plustegn cosinus x
39cosxcosy=2cosx+y2cosxy2cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2cosinus x cosinus y, lig med 2, the cosinus of, the fraction with numerator x plustegn y, and denominator 2, the cosinus of, the fraction with numerator x minustegn y, and denominator 2
40sin1xthe inverse sine of xthe inverse sinus of x
41cos1xthe inverse cosine of xthe inverse cosinus of x
42tan1xthe inverse tangent of xthe inverse tangens of x
43cot1xthe inverse cotangent of xthe inverse cotangens of x
44sec1xthe inverse secant of xthe inverse secans of x
45csc1xthe inverse cosecant of xthe inverse cosecans of x
46sin122the inverse sine of, the fraction with numerator the square root of 2, and denominator 2the inverse sinus of, the fraction with numerator the square root of 2, and denominator 2
47cos112the inverse cosine of one halfthe inverse cosinus of en halve
48tan117the inverse tangent of 17the inverse tangens of 17
49cot132the inverse cotangent of 32the inverse cotangens of 32
50sec1100the inverse secant of 100the inverse secans of 100
51csc185the inverse cosecant of 85the inverse cosecans of 85
52sin1(x)the inverse sine of negative xthe inverse sinus of negative x
53cos1(x)the inverse cosine of negative xthe inverse cosinus of negative x
54tan1(x+12)the inverse tangent of, open paren, negative x plus 12, close parenthe inverse tangens of, venstre parantes, negative x plustegn 12, højre parantes
55cot1(x1)the inverse cotangent of, open paren, negative x minus 1, close parenthe inverse cotangens of, venstre parantes, negative x minustegn 1, højre parantes
56sin1(sin0)the inverse sine of sine 0the inverse sinus of sinus 0
57csc1(cscx)the inverse cosecant of cosecant xthe inverse cosecans of cosecans x
58cos(cos1(22))the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, the inverse cosinus of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
59cos(cos1(22))the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, negative, the inverse cosinus of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
60sin1(cosπ4)the inverse sine of, open paren, the cosine of, pi over 4, close parenthe inverse sinus of, venstre parantes, the cosinus of, pi over 4, højre parantes
61sin(cos112)sine, the inverse cosine of one halfsinus, the inverse cosinus of en halve
62sin(tan11)sine, the inverse tangent of 1sinus, the inverse tangens of 1
63sin(tan11)the sine of, open paren, negative, the inverse tangent of 1, close parenthe sinus of, venstre parantes, negative, the inverse tangens of 1, højre parantes
64sin(tan1(1))the sine of, open paren, negative, the inverse tangent of negative 1, close parenthe sinus of, venstre parantes, negative, the inverse tangens of negative 1, højre parantes
65sec1(secx)the inverse secant of secant xthe inverse secans of secans x
66arcsinxarc sine xarcus sinus x
67arccosxarc cosine xarcus cosinus x
68arctanxarc tangent xarcus tangens x
69sinhxhyperbolic sine of xsinus hyperbolsk of x
70coshxhyperbolic cosine of xhyperbolsk cosinus of x
71tanhxhyperbolic tangent of xhyperbolsk tangens of x
72cothxhyperbolic cotangent of xhyperbolsk cotangens of x
73sechxhyperbolic secant of xhyperbolsk sekans of x
74cschxhyperbolic cosecant of xhyperbolsk cosecans of x
75sinh1xthe inverse hyperbolic sine of xthe inverse sinus hyperbolsk of x
76cosh1xthe inverse hyperbolic cosine of xthe inverse hyperbolsk cosinus of x
77tanh1xthe inverse hyperbolic tangent of xthe inverse hyperbolsk tangens of x
78coth1xthe inverse hyperbolic cotangent of xthe inverse hyperbolsk cotangens of x
79sech1xthe inverse hyperbolic secant of xthe inverse hyperbolsk sekans of x
80csch1xthe inverse hyperbolic cosecant of xthe inverse hyperbolsk cosecans of x
81sinh(sinh1x)hyperbolic sine of, the inverse hyperbolic sine of xsinus hyperbolsk of, the inverse sinus hyperbolsk of x
82cosh(cosh1x)hyperbolic cosine of, the inverse hyperbolic cosine of xhyperbolsk cosinus of, the inverse hyperbolsk cosinus of x
83tanh(tanh1x)hyperbolic tangent of, the inverse hyperbolic tangent of xhyperbolsk tangens of, the inverse hyperbolsk tangens of x
84coth(coth1x)hyperbolic cotangent of, the inverse hyperbolic cotangent of xhyperbolsk cotangens of, the inverse hyperbolsk cotangens of x
85sinh1(sinhx)the inverse hyperbolic sine of, hyperbolic sine of xthe inverse sinus hyperbolsk of, sinus hyperbolsk of x
86cosh1(coshx)the inverse hyperbolic cosine of, hyperbolic cosine of xthe inverse hyperbolsk cosinus of, hyperbolsk cosinus of x
87tanh1(tanhx)the inverse hyperbolic tangent of, hyperbolic tangent of xthe inverse hyperbolsk tangens of, hyperbolsk tangens of x
88coth1(cothx)the inverse hyperbolic cotangent of, hyperbolic cotangent of xthe inverse hyperbolsk cotangens of, hyperbolsk cotangens of x

Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_Auto:Roots_RootEnd.

0sin(π8)=1222the sine of, open paren, negative, pi over 8, close paren, equals negative one half the square root of 2 minus the square root of 2, end root, end rootthe sinus of, venstre parantes, negative, pi over 8, højre parantes, lig med negative en halve the square root of 2 minustegn the square root of 2, end root, end root
1tan3π8=2+121the tangent of, 3 pi over 8, equals, the fraction with numerator the square root of, the square root of 2, end root, plus 1, end root, and denominator the square root of, the square root of 2, end root, minus 1, end rootthe tangens of, 3 pi over 8, lig med, the fraction with numerator the square root of, the square root of 2, end root, plustegn 1, end root, and denominator the square root of, the square root of 2, end root, minustegn 1, end root
2tanπ12=1223the tangent of, pi over 12, equals one half the square root of 2 minus the square root of 3, end root, end rootthe tangens of, pi over 12, lig med en halve the square root of 2 minustegn the square root of 3, end root, end root

Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_TrigInverse.

0sin1xsine inverse of xsinus inverse of x
1cos1xcosine inverse of xcosinus inverse of x
2tan1xtangent inverse of xtangens inverse of x
3cot1xcotangent inverse of xcotangens inverse of x
4sec1xsecant inverse of xsecans inverse of x
5csc1xcosecant inverse of xcosecans inverse of x
6sin122sine inverse of, the fraction with numerator the square root of 2, and denominator 2sinus inverse of, the fraction with numerator the square root of 2, and denominator 2
7cos112cosine inverse of one halfcosinus inverse of en halve
8tan117tangent inverse of 17tangens inverse of 17
9cot132cotangent inverse of 32cotangens inverse of 32
10sec1100secant inverse of 100secans inverse of 100
11csc185cosecant inverse of 85cosecans inverse of 85
12sin1(x)sine inverse of negative xsinus inverse of negative x
13cos1(x)cosine inverse of negative xcosinus inverse of negative x
14tan1(x+12)tangent inverse of, open paren, negative x plus 12, close parentangens inverse of, venstre parantes, negative x plustegn 12, højre parantes
15cot1(x1)cotangent inverse of, open paren, negative x minus 1, close parencotangens inverse of, venstre parantes, negative x minustegn 1, højre parantes
16sin1(sin0)sine inverse of sine 0sinus inverse of sinus 0
17csc1(cscx)cosecant inverse of cosecant xcosecans inverse of cosecans x
18cos(cos1(22))the cosine of, open paren, cosine inverse of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, cosinus inverse of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
19cos(cos1(22))the cosine of, open paren, negative, cosine inverse of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, negative, cosinus inverse of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
20sin1(cosπ4)sine inverse of, open paren, the cosine of, pi over 4, close parensinus inverse of, venstre parantes, the cosinus of, pi over 4, højre parantes
21sin(cos112)sine, cosine inverse of one halfsinus, cosinus inverse of en halve
22sin(tan11)sine, tangent inverse of 1sinus, tangens inverse of 1
23sin(tan11)the sine of, open paren, negative, tangent inverse of 1, close parenthe sinus of, venstre parantes, negative, tangens inverse of 1, højre parantes
24sin(tan1(1))the sine of, open paren, negative, tangent inverse of negative 1, close parenthe sinus of, venstre parantes, negative, tangens inverse of negative 1, højre parantes
25sec1(secx)secant inverse of secant xsecans inverse of secans x

Danish Clearspeak Trigometry rule tests. Locale: da, Style: Trig_ArcTrig.

0sin1xarc sine xarc sinus x
1cos1xarc cosine xarc cosinus x
2tan1xarc tangent xarc tangens x
3cot1xarc cotangent xarc cotangens x
4sec1xarc secant xarc secans x
5csc1xarc cosecant xarc cosecans x
6sin122arc sine of, the fraction with numerator the square root of 2, and denominator 2arc sinus of, the fraction with numerator the square root of 2, and denominator 2
7cos112arc cosine one halfarc cosinus en halve
8tan117arc tangent 17arc tangens 17
9cot132arc cotangent 32arc cotangens 32
10sec1100arc secant 100arc secans 100
11csc185arc cosecant 85arc cosecans 85
12sin1(x)arc sine negative xarc sinus negative x
13cos1(x)arc cosine negative xarc cosinus negative x
14tan1(x+12)arc tangent of, open paren, negative x plus 12, close parenarc tangens of, venstre parantes, negative x plustegn 12, højre parantes
15cot1(x1)arc cotangent of, open paren, negative x minus 1, close parenarc cotangens of, venstre parantes, negative x minustegn 1, højre parantes
16sin1(sin0)arc sine, sine 0arc sinus, sinus 0
17csc1(cscx)arc cosecant, cosecant xarc cosecans, cosecans x
18cos(cos1(22))the cosine of, open paren, arc cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, arc cosinus of, venstre parantes, negative, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
19cos(cos1(22))the cosine of, open paren, negative, arc cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parenthe cosinus of, venstre parantes, negative, arc cosinus of, venstre parantes, the fraction with numerator the square root of 2, and denominator 2, højre parantes, højre parantes
20sin1(cosπ4)arc sine of, open paren, the cosine of, pi over 4, close parenarc sinus of, venstre parantes, the cosinus of, pi over 4, højre parantes
21sin(cos112)sine, arc cosine one halfsinus, arc cosinus en halve
22sin(tan11)sine, arc tangent 1sinus, arc tangens 1
23sin(tan11)the sine of, open paren, negative, arc tangent 1, close parenthe sinus of, venstre parantes, negative, arc tangens 1, højre parantes
24sin(tan1(1))the sine of, open paren, negative, arc tangent negative 1, close parenthe sinus of, venstre parantes, negative, arc tangens negative 1, højre parantes
25sec1(secx)arc secant, secant xarc secans, secans x

Danish Clearspeak Units tests. Locale: da, Style: Verbose.

0in2square inchessquare tommer
1s2seconds to the second powersekunder to the anden power
2m2square meterssquare meter
3in3cubic inchescubic tommer
4s3seconds to the third powersekunder to the tredje power
5m3cubic meterscubic meter
6in-1reciprocal inchesreciprocal tommer
7in-1mm-1reciprocal inches per millimeterreciprocal tommer per millimeter
8inmminches per millimetertommer per millimeter
9kmkilometerskilometer
10Aamperesampere
11Ωohmsohm
12kilohmskiloohm
13°CCelsiusCelsius
14minminmin of minutesminimum of minutter
153km3 kilometers3 kilometer
16km+skilometers plus secondskilometer plustegn sekunder
17km2square kilometerssquare kilometer
18m3cubic meterscubic meter
19km4kilometers to the fourth powerkilometer to the fjerde power
20m-1reciprocal metersreciprocal meter
21sm-1seconds per metersekunder per meter
22sm-1seconds per meter to the negative 1 powersekunder per meter to the negative 1 power
23sm-1seconds per meter to the negative 1 powersekunder per meter to the negative 1 power
243m-13 reciprocal meters3 reciprocal meter
25kmhkilometers per hourkilometer per time
26NkmhNewtons kilometers per hourNewton kilometer per time
27mkmm over kilometersm over kilometer
283kmh3 kilometers hours3 kilometer timer
29s3mkmhseconds 3 m kilometers hourssekunder 3 m kilometer timer
30kms23mkmhkilometers seconds to the second power 3 m kilometers hourskilometer sekunder to the anden power 3 m kilometer timer
313mkmhNs23 m kilometers hours the fraction with numerator N and denominator seconds to the second power3 m kilometer timer the fraction with numerator N and denominator sekunder to the anden power
323mkmhNs23 m kilometers hours Newtons per second to the second power3 m kilometer timer Newton per sekund to the anden power
334mm4 millimeters4 millimeter
341mm1 millimeter1 millimeter
354mm4 millimeters4 millimeter
361mm1 millimeter1 millimeter
37msmeters secondsmeter sekunder
38msm secondsm sekunder
39msmeters smeter s
40msmeters secondsmeter sekunder
41msm secondsm sekunder
42msmeters smeter s
43mslmeters seconds litersmeter sekunder liter
4463360in=63360in.=63360=63360inches=5280ft=5280ft.=5280=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile63360 tommer lig med 63360 tommer lig med 63360 tommer lig med 63360 inches lig med 5280 fod lig med 5280 fod lig med 5280 fod lig med 5280 feet lig med 1760 yards lig med 1760 yards lig med 1760 yards lig med 1 mil lig med 1 mil lig med 1 mile
458000li=8000li.=8000links=320rd=320rd.=320rods=80ch=80ch.=80chains=8fur=8fur.=8furlongs=1mi=1mi.=1mile8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile8000 links lig med 8000 links lig med 8000 links lig med 320 stænger lig med 320 stænger lig med 320 rods lig med 80 kæder lig med 80 kæder lig med 80 chains lig med 8 furlong lig med 8 furlong lig med 8 furlongs lig med 1 mil lig med 1 mil lig med 1 mile
4643560sq ft=43560sq. ft.=43560ft2=435602=43560square feet=4840sq yd=4840sq. yd.=4840yd2=4840square yards=160sq rd=160sq. rd.=160rd2=160square rods=1ac=1ac.=1acre=1640sq mi=1640sq. mi.=1640mi2=1640square miles43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles43560 kvadratfod lig med 43560 kvadratfod lig med 43560 square fod lig med 43560 fod squared lig med 43560 square feet lig med 4840 kvadratyard lig med 4840 kvadratyard lig med 4840 square yards lig med 4840 square yards lig med 160 kvadratrødder lig med 160 kvadratrødder lig med 160 square stænger lig med 160 square rods lig med 1 acre lig med 1 acre lig med 1 acre lig med 1 over 640 kvadratmil lig med 1 over 640 kvadratmil lig med 1 over 640 square mil lig med 1 over 640 square miles
4746656cu in=46656cu. in.=46656in3=466563=46656cubic inches=27cu ft=27cu. ft.=27ft3=273=27cubic feet=1cu yd=1cu. yd.=1yd3=1cubic yard46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard46656 kubiktommer lig med 46656 kubiktommer lig med 46656 cubic tommer lig med 46656 tommer cubed lig med 46656 cubic inches lig med 27 kubikfod lig med 27 kubikfod lig med 27 cubic fod lig med 27 fod cubed lig med 27 cubic feet lig med 1 kubikyard lig med 1 kubikyard lig med 1 cubic yard lig med 1 cubic yard
481024fl dr=1024fl. dr.=1024fluid drams=768tsp=768tsp.=768teaspoons=256Tbsp=256Tbsp.=256tablespoons=128fl oz=128fl. oz.=128fluid ounces=16cp=16cp.=16cups=8pt=8pt.=8pints=4qt=4qt.=4quarts=1gal=1gal.=1gallon1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon1024 fluid drams lig med 1024 fluid drams lig med 1024 fluid drams lig med 768 teskeer lig med 768 teskeer lig med 768 teaspoons lig med 256 spiseskeer lig med 256 spiseskeer lig med 256 tablespoons lig med 128 flydende ounces lig med 128 flydende ounces lig med 128 fluid ounces lig med 16 kopper lig med 16 kopper lig med 16 cups lig med 8 pints lig med 8 pints lig med 8 pints lig med 4 quarts lig med 4 quarts lig med 4 quarts lig med 1 gallon lig med 1 gallon lig med 1 gallon
49256dr=256dr.=256drams=16oz=16oz.=16ounces=1#=1lb=1lb.=1pounds=100cwt=100cwt.=100hundredweights=2000tons256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons256 dram lig med 256 dram lig med 256 drams lig med 16 ounces lig med 16 ounces lig med 16 ounces lig med 1 # lig med 1 pund lig med 1 pund lig med 1 pounds lig med 100 hektokilogram lig med 100 hektokilogram lig med 100 hundredweights lig med 2000 tons
5063360in=63360in.=63360=63360inches=5280ft=5280ft.=5280=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile63360 tommer lig med 63360 tommer lig med 63360 tommer lig med 63360 inches lig med 5280 fod lig med 5280 fod lig med 5280 fod lig med 5280 feet lig med 1760 yards lig med 1760 yards lig med 1760 yards lig med 1 mil lig med 1 mil lig med 1 mile
511J=1kg·m2·s-21 joule equals 1 kilogram times square meters times seconds to the negative 2 power1 joule lig med 1 kilogram prik square meter prik sekunder to the negative 2 power
521J=1kgm2s-21 joule equals 1 kilogram square meters seconds to the negative 2 power1 joule lig med 1 kilogram square meter sekunder to the negative 2 power
531J=1·kg·m2·s-21 joule equals 1 kilogram square meters seconds to the negative 2 power1 joule lig med 1 kilogram square meter sekunder to the negative 2 power
54in3cubic inchescubic tommer
55kmkgs2Jkilometers kilograms seconds to the second power per joulekilometer kilogram sekunder to the anden power per joule
563km1kgs2J3 kilometers 1 kilogram seconds to the second power over joules3 kilometer 1 kilogram sekunder to the anden power over joule
571kmkgs2J1 kilometer kilograms seconds to the second power over joules1 kilometer kilogram sekunder to the anden power over joule
581kmkgs25J1 kilometer kilograms seconds to the second power over 5 joules1 kilometer kilogram sekunder to the anden power over 5 joule
59kmkilometerskilometer
603kmkgs2J3 kilometers kilograms seconds to the second power joules3 kilometer kilogram sekunder to the anden power joule
613kmkgs2J3 kilometers kilograms seconds to the second power joules3 kilometer kilogram sekunder to the anden power joule
623km4kgs2J3 kilometers 4 kilograms seconds to the second power joules3 kilometer 4 kilogram sekunder to the anden power joule
633km1kgs2J3 kilometers 1 kilogram seconds to the second power joules3 kilometer 1 kilogram sekunder to the anden power joule
641kms+2kms+0kms+akms+1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus1 kilometer sekunder plustegn 2 kilometer sekunder plustegn 0 kilometer sekunder plustegn a kilometer sekunder plustegn
651km+2km+0km+akm1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers1 kilometer plustegn 2 kilometer plustegn 0 kilometer plustegn a kilometer
66123kg1 and two thirds kilograms1 and to tredjedele kilogram
67123kgkm1 and two thirds kilograms kilometers1 and to tredjedele kilogram kilometer
681km2kgkm1 kilometer 2 kilograms kilometers1 kilometer 2 kilogram kilometer
691kmkgs+2kmkgs+0kmkgs+akmkgs+1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus1 kilometer kilogram sekunder plustegn 2 kilometer kilogram sekunder plustegn 0 kilometer kilogram sekunder plustegn a kilometer kilogram sekunder plustegn
701$1 dollar1 dollar
71$11 dollars1 dollars
72$dollarsdollars
73$dollarsdollars
742$2 dollars2 dollars
75$22 dollars2 dollars
761$+2$+0$+a$1 dollar plus 2 dollars plus 0 dollars plus a dollars1 dollar plustegn 2 dollars plustegn 0 dollars plustegn a dollars
771$+$2+0$+$a1 dollar plus 2 dollars plus 0 dollars plus a dollars1 dollar plustegn 2 dollars plustegn 0 dollars plustegn a dollars
781+2+0+a1 euro plus 2 euros plus 0 euros plus a euros1 euro plustegn 2 euro plustegn 0 euro plustegn a euro
791+2+0+a1 pound plus 2 pounds plus 0 pounds plus a pounds1 pund plustegn 2 pund plustegn 0 pund plustegn a pund

Danish Clearspeak Units tests. Locale: da, Style: Currency_Position.

01$1 dollars1 dollars
1$1dollars 1dollars 1
2$dollarsdollars
3$dollarsdollars
42$2 dollars2 dollars
5$2dollars 2dollars 2
61$+2$+0$+a$1 dollars plus 2 dollars plus 0 dollars plus a dollars1 dollars plustegn 2 dollars plustegn 0 dollars plustegn a dollars
71$+$2+0$+$a1 dollars plus dollars 2 plus 0 dollars plus dollars a1 dollars plustegn dollars 2 plustegn 0 dollars plustegn dollars a

Danish Clearspeak Units tests. Locale: da, Style: Currency_Prefix.

01$dollars 1dollars 1
1$1dollars 1dollars 1
2$dollarsdollars
3$dollarsdollars
42$dollars 2dollars 2
5$2dollars 2dollars 2
61$+2$+0$+a$dollars 1 plus dollars 2 plus dollars 0 plus dollars adollars 1 plustegn dollars 2 plustegn dollars 0 plustegn dollars a
71$+$2+0$+$adollars 1 plus dollars 2 plus dollars 0 plus dollars adollars 1 plustegn dollars 2 plustegn dollars 0 plustegn dollars a

Danish Clearspeak Neutral Fences rule tests. Locale: da, Style: Verbose.

0|a|the absolute value of athe absolute value of a
1athe absolute value of athe absolute value of a
2¦a¦the absolute value of athe absolute value of a
3athe metric of athe metric of a
4athe metric of athe metric of a
5athe metric of athe metric of a
6athe metric of athe metric of a
7adivides a double vertical bardivides a dobbelt lodret bar
8aparallel to a double vertical barparallel med a dobbelt lodret bar
9a¦divides a dividesdivides a divides
10atriple vertical bar a double vertical bartredobbelt lodret streg a dobbelt lodret bar
11aba divides ba divides b
12a|ba divides ba divides b
13a¦ba divides ba divides b
14aba double vertical bar ba dobbelt lodret bar b
15aba parallel to ba parallel med b
16aba triple vertical bar ba tredobbelt lodret streg b
17fgf divides gf divides g
18f|gf divides gf divides g
19f¦gf divides gf divides g
20fgf double vertical bar gf dobbelt lodret bar g
21fgf parallel to gf parallel med g
22fgf triple vertical bar gf tredobbelt lodret streg g
23singsine triple vertical bar gsinus tredobbelt lodret streg g
24f|a|f of, the absolute value of af of, the absolute value of a
25g|a|g of, the absolute value of ag of, the absolute value of a
26h|a|h of, the absolute value of ah of, the absolute value of a
27r|a|r times, the absolute value of ar , the absolute value of a
28sin|a|sine, the absolute value of asinus, the absolute value of a
29|a|the sum of, the absolute value of athe sum of, the absolute value of a
30faf of, the metric of af of, the metric of a
31gag of, the metric of ag of, the metric of a
32hah of, the metric of ah of, the metric of a
33rar times, the metric of ar , the metric of a
34sinasine, the metric of asinus, the metric of a
35athe sum of, the metric of athe sum of, the metric of a

Danish Clearspeak Neutral Fences rule tests. Locale: da, Style: AbsoluteValue_AbsEnd.

0|a|the absolute value of a, end absolute valuethe absolute value of a, end absolute value
1athe absolute value of a, end absolute valuethe absolute value of a, end absolute value
2¦a¦the absolute value of a, end absolute valuethe absolute value of a, end absolute value
3athe metric of a, end metricthe metric of a, end metric
4athe metric of a, end metricthe metric of a, end metric
5athe metric of a, end metricthe metric of a, end metric
6athe metric of a, end metricthe metric of a, end metric
7adivides a double vertical bardivides a dobbelt lodret bar
8aparallel to a double vertical barparallel med a dobbelt lodret bar
9a¦divides a dividesdivides a divides
10atriple vertical bar a double vertical bartredobbelt lodret streg a dobbelt lodret bar
11aba divides ba divides b
12a|ba divides ba divides b
13a¦ba divides ba divides b
14aba double vertical bar ba dobbelt lodret bar b
15aba parallel to ba parallel med b
16aba triple vertical bar ba tredobbelt lodret streg b
17f|a|f of, the absolute value of a, end absolute valuef of, the absolute value of a, end absolute value
18g|a|g of, the absolute value of a, end absolute valueg of, the absolute value of a, end absolute value
19h|a|h of, the absolute value of a, end absolute valueh of, the absolute value of a, end absolute value
20r|a|r times, the absolute value of a, end absolute valuer , the absolute value of a, end absolute value
21sin|a|sine, the absolute value of a, end absolute valuesinus, the absolute value of a, end absolute value
22|a|the sum of, the absolute value of a, end absolute valuethe sum of, the absolute value of a, end absolute value
23faf of, the metric of a, end metricf of, the metric of a, end metric
24gag of, the metric of a, end metricg of, the metric of a, end metric
25hah of, the metric of a, end metrich of, the metric of a, end metric
26rar times, the metric of a, end metricr , the metric of a, end metric
27sinasine, the metric of a, end metricsinus, the metric of a, end metric
28athe sum of, the metric of a, end metricthe sum of, the metric of a, end metric
29fgf divides gf divides g
30f|gf divides gf divides g
31f¦gf divides gf divides g
32fgf double vertical bar gf dobbelt lodret bar g
33fgf parallel to gf parallel med g
34fgf triple vertical bar gf tredobbelt lodret streg g
35singsine triple vertical bar gsinus tredobbelt lodret streg g