## Afrikaans Mathspeak Inference rules. Locale: af, Style: Verbose.

 0 $\begin{array}{c}\begin{array}{c}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule with conclusion upper X and 1 premise inference rule with conclusion großes X and 1 premise 1 $\begin{array}{c}\begin{array}{c}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule with conclusion upper X and 1 premise inference rule with conclusion großes X and 1 premise 2 $\begin{array}{c}\begin{array}{c}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule with conclusion upper X and 1 premise inference rule with conclusion großes X and 1 premise 3 $\begin{array}{c}\begin{array}{c}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}\text{N}$ inference rule label upper N with conclusion upper X and 1 premise inference rule label großes N with conclusion großes X and 1 premise 4 $\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}$ axiom upper A axiom großes A 5 $\phantom{\rule{.5ex}{0ex}}\phantom{\rule{.5ex}{0ex}}$ empty axiom empty axiom 6 $\begin{array}{c}\begin{array}{c}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}\text{N}$ inference rule label upper N with conclusion upper X and 1 premise inference rule label großes N with conclusion großes X and 1 premise 7 $\begin{array}{c}\begin{array}{ccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}\text{N}$ inference rule label upper N with conclusion upper X and 2 premises inference rule label großes N with conclusion großes X and 2 premises 8 $\begin{array}{c}\begin{array}{ccccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}C\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}\text{N}$ inference rule label upper N with conclusion upper X and 3 premises inference rule label großes N with conclusion großes X and 3 premises 9 $\text{N}\begin{array}{c}\begin{array}{c}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule label upper N with conclusion upper X and 1 premise inference rule label großes N with conclusion großes X and 1 premise 10 $\text{N}\begin{array}{c}\begin{array}{ccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule label upper N with conclusion upper X and 2 premises inference rule label großes N with conclusion großes X and 2 premises 11 $\text{N}\begin{array}{c}\begin{array}{ccccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}C\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ inference rule label upper N with conclusion upper X and 3 premises inference rule label großes N with conclusion großes X and 3 premises 12 $\begin{array}{c}\begin{array}{c}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ 1st premise axiom upper A 1. premise axiom großes A 13 $\begin{array}{c}\begin{array}{ccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ 1st premise axiom upper A 2nd premise axiom upper B 1. premise axiom großes A 2. premise axiom großes B 14 $\begin{array}{c}\begin{array}{ccccc}\phantom{\rule{.5ex}{0ex}}A\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}B\phantom{\rule{.5ex}{0ex}}& & \phantom{\rule{.5ex}{0ex}}C\phantom{\rule{.5ex}{0ex}}\end{array}\\ \phantom{\rule{.5ex}{0ex}}X\phantom{\rule{.5ex}{0ex}}\end{array}$ 1st premise axiom upper A 2nd premise axiom upper B 3rd premise axiom upper C 1. premise axiom großes A 2. premise axiom großes B 3. premise axiom großes C