0 | | f of, g of x | f van, g van x |
1 | | f of, g of x, equals f of x, plus g of x | f van, g van x, is gelyk aan f van x, plus g van x |
2 | | sine x y | sinus x y |
3 | | 2 lines, Line 1: a. Line 2: blank | 2 lyne, Lyn 1: a. Lyn 2: leeg |
4 | | 2 lines, Line 1: a. Line 2: blank | 2 lyne, Lyn 1: a. Lyn 2: leeg |
5 | | 2 lines, Line 1: a. Line 2: blank | 2 lyne, Lyn 1: a. Lyn 2: leeg |
6 | | 2 lines, Line 1: a; equals; b | 2 lyne, Lyn 1: a; is gelyk aan; b |
7 | | 2 lines, Line 1: a; equals; b. Line 2: blank | 2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg |
8 | | 2 lines, Line 1: a; equals; b. Line 2: blank | 2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg |
9 | | 2 lines, Line 1: a; equals; b. Line 2: 1; blank; 2 | 2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: 1; leeg; 2 |
10 | | 45 degrees, 10 minutes, 20 seconds | 45 grade, 10 minute, 20 sekondes |
11 | | 1 degree, 10 minutes, 20 seconds | 1 graad, 10 minute, 20 sekondes |
12 | | 45 degrees, 1 minute, 20 seconds | 45 grade, 1 minuut, 20 sekondes |
13 | | 45 degrees, 10 minutes, 1 second | 45 grade, 10 minute, 1 sekonde |
14 | | 1 foot, 20 inches | 1 voet, 20 duim |
15 | | 10 feet, 1 inch | 10 voet, 1 duim |
16 | | enclosed with box 12 | omring deur boks 12 |
17 | | crossed out 12 | doodgetrek 12 |
18 | | 12 crossed out with 2 | 12 oorskryf met 2 |
19 | | 12 crossed out with 2 | 12 oorskryf met 2 |
20 | | 12 crossed out with 2 | 12 oorskryf met 2 |
21 | | 12 crossed out with 2 | 12 oorskryf met 2 |
22 | | vertical bar A | vertikale lyn A |
23 | | A horizontal bar | A horisontale lyn |
24 | | A vertical bar | A vertikale lyn |
25 | | A over horizontal bar | A oor horisontale lyn |
26 | | the square root of, the cube root of a, plus b | die vierkantswortel van, die derdemagswortel van a, plus b |
27 | | the square root of, the fourth root of a, plus b | die vierkantswortel van, die vierde wortel van a, plus b |
28 | | the square root of, the square root of a, plus b | die vierkantswortel van, die vierkantswortel van a, plus b |
29 | | left sub a left super b x right sub c right super d | linker onderskrif a linker boskrif b x regter onderskrif c regter boskrif d |
30 | | left sub a b left super g h x right sub c d right super e f | linker onderskrif a b linker boskrif g h x regter onderskrif c d regter boskrif e f |
31 | | left sub a left super b x; right super d | linker onderskrif a linker boskrif b x; regter boskrif d |
32 | | left sub a left super b x right sub c; r | linker onderskrif a linker boskrif b x regter onderskrif c; r |
33 | | l; left super b x right sub c right super d | l; linker boskrif b x regter onderskrif c regter boskrif d |
34 | | left sub a; x right sub c right super d | linker onderskrif a; x regter onderskrif c regter boskrif d |
35 | | the set of all x not in A such that B | die versameling van alle x nie in A sodat B |
36 | | the set B | die versameling B |
37 | | the empty set | die leë versameling |
38 | | the positive rational numbers | die positiewe rasionele getalle |
39 | | the positive rational numbers | die positiewe rasionele getalle |
40 | | the negative rational numbers | die negatiewe rasionele getalle |
41 | | the negative rational numbers | die negatiewe rasionele getalle |
42 | | q-two | q-twee |
43 | | q-two | q-twee |
44 | | n-two | n-twee |
45 | | n-two | n-twee |
46 | | a | a |
47 | | 10 over 20 | 10 oor 20 |
48 | | 2 kilometers over b | 2 kilometer oor b |
49 | | the repeating decimal 1 point 4 followed by repeating digit 3 | die herhalende dessimaal 1 punt 4 gevolg deur herhalende syfer 3 |
50 | | 3 raised to the 2 squared power | 3 verhef tot die 2 kwadraat mag |
51 | | 3 raised to the i squared power | 3 verhef tot die i kwadraat mag |
52 | | 3 raised to the two thirds squared power | 3 verhef tot die twee derdes kwadraat mag |
53 | | 3 raised to the 2 cubed power | 3 verhef tot die 2 tot die mag drie mag |
54 | | 3 raised to the i cubed power | 3 verhef tot die i tot die mag drie mag |
55 | | 3 raised to the two thirds cubed power | 3 verhef tot die twee derdes tot die mag drie mag |
56 | | a is less than or equal to b equals c | a kleiner of gelyk aan b is gelyk aan c |
57 | | 3 raised to the sine of, open paren, 2 plus x, close paren, power | 3 verhef tot die sinus van, links hakkie, 2 plus x, regs hakkie, mag |
58 | | sum under I | som onder I |
59 | | A under B | A onder B |
60 | | determinant A | determinant A |
0 | | 3 squared | 3 kwadraat |
1 | 33 | 3 cubed | 3 tot die mag drie |
2 | 35 | 3 to the fifth power | 3 tot die vyfde mag |
3 | 31 | 3 to the first power | 3 tot die eerste mag |
4 | b1 | b to the first power | b tot die eerste mag |
5 | 35.0 | 3 raised to the 5.0 power | 3 verhef tot die 5,0 mag |
6 | 30 | 3 to the 0 power | 3 tot die 0 mag |
7 | 411 | 4 to the 11th power | 4 tot die 11. mag |
8 | 3−2 | 3 to the negative 2 power | 3 tot die negatiewe 2 mag |
9 | 3−2.0 | 3 raised to the negative 2.0 power | 3 verhef tot die negatiewe 2,0 mag |
10 | 4x | 4 to the x-th power | 4 tot die x-de mag |
11 | 3y+2 | 3 raised to the y plus 2 power | 3 verhef tot die y plus 2 mag |
12 | (2y−3)3z+8 | open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power | links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag |
13 | p12 | p sub 1, squared | p onderskrif 1, kwadraat |
14 | p13 | p sub 1, cubed | p onderskrif 1, tot die mag drie |
15 | p14 | p sub 1, to the fourth power | p onderskrif 1, tot die vierde mag |
16 | p110 | p sub 1, to the tenth power | p onderskrif 1, tot die tiende mag |
17 | p1x+1 | p sub 1, raised to the x plus 1 power | p onderskrif 1, verhef tot die x plus 1 mag |
18 | px12 | p sub, x sub 1, squared | p onderskrif, x onderskrif 1, kwadraat |
19 | px13 | p sub, x sub 1, cubed | p onderskrif, x onderskrif 1, tot die mag drie |
20 | px14 | p sub, x sub 1, to the fourth power | p onderskrif, x onderskrif 1, tot die vierde mag |
21 | px110 | p sub, x sub 1, to the tenth power | p onderskrif, x onderskrif 1, tot die tiende mag |
22 | px1y+1 | p sub, x sub 1, raised to the y plus 1 power | p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag |
23 | 322 | 3 raised to the 2 squared power | 3 verhef tot die 2 kwadraat mag |
24 | 32x2 | 3 raised to the 2 x squared power | 3 verhef tot die 2 x kwadraat mag |
25 | 523 | 5 raised to the 2 cubed power | 5 verhef tot die 2 tot die mag drie mag |
26 | 52x3 | 5 raised to the 2 x cubed power | 5 verhef tot die 2 x tot die mag drie mag |
27 | 322+1 | 3 raised to the exponent, 2 squared plus 1, end exponent | 3 verhef tot die eksponent, 2 kwadraat plus 1, end eksponent |
28 | 322+1 | 3 raised to the 2 squared power, plus 1 | 3 verhef tot die 2 kwadraat mag, plus 1 |
29 | 2x2+3x3 | 2 raised to the exponent, x squared plus 3 x cubed, end exponent | 2 verhef tot die eksponent, x kwadraat plus 3 x tot die mag drie, end eksponent |
30 | 334 | 3 raised to the exponent, 3 to the fourth power, end exponent | 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent |
31 | 334+2 | 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent | 3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent |
32 | 334+2 | 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 | 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2 |
33 | 2x4 | 2 raised to the exponent, x to the fourth power, end exponent | 2 verhef tot die eksponent, x tot die vierde mag, end eksponent |
34 | 210x+3 | 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent | 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent |
35 | 3310 | 3 raised to the exponent, 3 to the tenth power, end exponent | 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent |
36 | 3310+1 | 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent | 3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent |
37 | 3310+1 | 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 | 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1 |
38 | 3(x+1)2 | 3 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, kwadraat, end eksponent |
39 | 3(x+1)10 | 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent |
40 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent |
41 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent |
42 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2 |
43 | e−12(x−μσ)2 | e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponent | e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, kwadraat, end eksponent |
44 | 2n | 2 to the n-th power | 2 tot die n-de mag |
45 | 2m | 2 to the m-th power | 2 tot die m-de mag |
46 | 2i | 2 to the i-th power | 2 tot die i-de mag |
47 | 2j | 2 to the j-th power | 2 tot die j-de mag |
48 | 2a | 2 to the a-th power | 2 tot die a-de mag |
0 | 32 | 3 to the second | 3 tot die tweede |
1 | 33 | 3 to the third | 3 tot die derde |
2 | 30 | 3 to the zero | 3 tot die nul |
3 | 31 | 3 to the first | 3 tot die eerste |
4 | 35 | 3 to the fifth | 3 tot die vyfde |
5 | 43.0 | 4 raised to the 3.0 power | 4 verhef tot die 3,0 mag |
6 | 411 | 4 to the eleventh | 4 tot die elfde |
7 | 3−2 | 3 to the negative 2 | 3 tot die negatiewe 2 |
8 | 3−2.0 | 3 raised to the negative 2.0 power | 3 verhef tot die negatiewe 2,0 mag |
9 | 4x | 4 to the x-th | 4 tot die x-de |
10 | 3y+2 | 3 raised to the y plus 2 power | 3 verhef tot die y plus 2 mag |
11 | (2y−3)3z+8 | open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power | links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag |
12 | p12 | p sub 1, to the second | p onderskrif 1, tot die tweede |
13 | p13 | p sub 1, to the third | p onderskrif 1, tot die derde |
14 | p14 | p sub 1, to the fourth | p onderskrif 1, tot die vierde |
15 | p110 | p sub 1, to the tenth | p onderskrif 1, tot die tiende |
16 | p1x+1 | p sub 1, raised to the x plus 1 power | p onderskrif 1, verhef tot die x plus 1 mag |
17 | px12 | p sub, x sub 1, to the second | p onderskrif, x onderskrif 1, tot die tweede |
18 | px13 | p sub, x sub 1, to the third | p onderskrif, x onderskrif 1, tot die derde |
19 | px14 | p sub, x sub 1, to the fourth | p onderskrif, x onderskrif 1, tot die vierde |
20 | px110 | p sub, x sub 1, to the tenth | p onderskrif, x onderskrif 1, tot die tiende |
21 | px1y+1 | p sub, x sub 1, raised to the y plus 1 power | p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag |
22 | 322 | 3 raised to the exponent, 2 to the second, end exponent | 3 verhef tot die eksponent, 2 tot die tweede, end eksponent |
23 | 32x2 | 3 raised to the exponent, 2 x to the second, end exponent | 3 verhef tot die eksponent, 2 x tot die tweede, end eksponent |
24 | 523 | 5 raised to the exponent, 2 to the third, end exponent | 5 verhef tot die eksponent, 2 tot die derde, end eksponent |
25 | 52x3 | 5 raised to the exponent, 2 x to the third, end exponent | 5 verhef tot die eksponent, 2 x tot die derde, end eksponent |
26 | 322+1 | 3 raised to the exponent, 2 to the second, plus 1, end exponent | 3 verhef tot die eksponent, 2 tot die tweede, plus 1, end eksponent |
27 | 322+1 | 3 raised to the exponent, 2 to the second, end exponent, plus 1 | 3 verhef tot die eksponent, 2 tot die tweede, end eksponent, plus 1 |
28 | 2x2+3x3 | 2 raised to the exponent, x to the second, plus 3 x to the third, end exponent | 2 verhef tot die eksponent, x tot die tweede, plus 3 x tot die derde, end eksponent |
29 | 334 | 3 raised to the exponent, 3 to the fourth, end exponent | 3 verhef tot die eksponent, 3 tot die vierde, end eksponent |
30 | 334+2 | 3 raised to the exponent, 3 to the fourth, plus 2, end exponent | 3 verhef tot die eksponent, 3 tot die vierde, plus 2, end eksponent |
31 | 334+2 | 3 raised to the exponent, 3 to the fourth, end exponent, plus 2 | 3 verhef tot die eksponent, 3 tot die vierde, end eksponent, plus 2 |
32 | 2x4 | 2 raised to the exponent, x to the fourth, end exponent | 2 verhef tot die eksponent, x tot die vierde, end eksponent |
33 | 210x+3 | 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent | 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent |
34 | 3310 | 3 raised to the exponent, 3 to the tenth, end exponent | 3 verhef tot die eksponent, 3 tot die tiende, end eksponent |
35 | 3310+1 | 3 raised to the exponent, 3 to the tenth, plus 1, end exponent | 3 verhef tot die eksponent, 3 tot die tiende, plus 1, end eksponent |
36 | 3310+1 | 3 raised to the exponent, 3 to the tenth, end exponent, plus 1 | 3 verhef tot die eksponent, 3 tot die tiende, end eksponent, plus 1 |
37 | 3(x+1)2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede, end eksponent |
38 | 3(x+1)10 | 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende, end eksponent |
39 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent |
40 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, plus 2, end eksponent |
41 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 2 | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, end eksponent, plus 2 |
42 | e−12x2 | e raised to the exponent, negative one half x to the second, end exponent | e verhef tot die eksponent, negatiewe een helfte x tot die tweede, end eksponent |
43 | e−12(x−μσ)2 | e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponent | e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede, end eksponent |
0 | 32 | 3 to the second power | 3 tot die tweede mag |
1 | 33 | 3 to the third power | 3 tot die derde mag |
2 | 30 | 3 to the zero power | 3 tot die nul mag |
3 | 31 | 3 to the first power | 3 tot die eerste mag |
4 | 35 | 3 to the fifth power | 3 tot die vyfde mag |
5 | 35.0 | 3 raised to the 5.0 power | 3 verhef tot die 5,0 mag |
6 | 411 | 4 to the eleventh power | 4 tot die elfde mag |
7 | 3−2 | 3 to the negative 2 power | 3 tot die negatiewe 2 mag |
8 | 3−2.0 | 3 raised to the negative 2.0 power | 3 verhef tot die negatiewe 2,0 mag |
9 | 4x | 4 to the x-th power | 4 tot die x-de mag |
10 | 3y+2 | 3 raised to the y plus 2 power | 3 verhef tot die y plus 2 mag |
11 | (2y−3)3z+8 | open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power | links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag |
12 | p12 | p sub 1, to the second power | p onderskrif 1, tot die tweede mag |
13 | p13 | p sub 1, to the third power | p onderskrif 1, tot die derde mag |
14 | p14 | p sub 1, to the fourth power | p onderskrif 1, tot die vierde mag |
15 | p110 | p sub 1, to the tenth power | p onderskrif 1, tot die tiende mag |
16 | p1x+1 | p sub 1, raised to the x plus 1 power | p onderskrif 1, verhef tot die x plus 1 mag |
17 | px12 | p sub, x sub 1, to the second power | p onderskrif, x onderskrif 1, tot die tweede mag |
18 | px13 | p sub, x sub 1, to the third power | p onderskrif, x onderskrif 1, tot die derde mag |
19 | px14 | p sub, x sub 1, to the fourth power | p onderskrif, x onderskrif 1, tot die vierde mag |
20 | px110 | p sub, x sub 1, to the tenth power | p onderskrif, x onderskrif 1, tot die tiende mag |
21 | px1y+1 | p sub, x sub 1, raised to the y plus 1 power | p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag |
22 | 322 | 3 raised to the exponent, 2 to the second power, end exponent | 3 verhef tot die eksponent, 2 tot die tweede mag, end eksponent |
23 | 32x2 | 3 raised to the exponent, 2 x to the second power, end exponent | 3 verhef tot die eksponent, 2 x tot die tweede mag, end eksponent |
24 | 523 | 5 raised to the exponent, 2 to the third power, end exponent | 5 verhef tot die eksponent, 2 tot die derde mag, end eksponent |
25 | 52x3 | 5 raised to the exponent, 2 x to the third power, end exponent | 5 verhef tot die eksponent, 2 x tot die derde mag, end eksponent |
26 | 322+1 | 3 raised to the exponent, 2 to the second power, plus 1, end exponent | 3 verhef tot die eksponent, 2 tot die tweede mag, plus 1, end eksponent |
27 | 322+1 | 3 raised to the exponent, 2 to the second power, end exponent, plus 1 | 3 verhef tot die eksponent, 2 tot die tweede mag, end eksponent, plus 1 |
28 | 2x2+3x3 | 2 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent | 2 verhef tot die eksponent, x tot die tweede mag, plus 3 x tot die derde mag, end eksponent |
29 | 334 | 3 raised to the exponent, 3 to the fourth power, end exponent | 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent |
30 | 334+2 | 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent | 3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent |
31 | 334+2 | 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 | 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2 |
32 | 2x4 | 2 raised to the exponent, x to the fourth power, end exponent | 2 verhef tot die eksponent, x tot die vierde mag, end eksponent |
33 | 210x+3 | 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent | 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent |
34 | 3310 | 3 raised to the exponent, 3 to the tenth power, end exponent | 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent |
35 | 3310+1 | 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent | 3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent |
36 | 3310+1 | 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 | 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1 |
37 | 3(x+1)2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede mag, end eksponent |
38 | 3(x+1)10 | 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent |
39 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent |
40 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent |
41 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2 |
42 | e−12x2 | e raised to the exponent, negative one half x to the second power, end exponent | e verhef tot die eksponent, negatiewe een helfte x tot die tweede mag, end eksponent |
43 | e−12(x−μσ)2 | e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponent | e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede mag, end eksponent |
0 | 32 | 3 raised to the power 2 | 3 verhef tot die mag 2 |
1 | 33 | 3 raised to the power 3 | 3 verhef tot die mag 3 |
2 | 31 | 3 raised to the power 1 | 3 verhef tot die mag 1 |
3 | 30 | 3 raised to the power 0 | 3 verhef tot die mag 0 |
4 | 35 | 3 raised to the power 5 | 3 verhef tot die mag 5 |
5 | 35.0 | 3 raised to the power 5.0 | 3 verhef tot die mag 5,0 |
6 | 411 | 4 raised to the power 11 | 4 verhef tot die mag 11 |
7 | 3−2 | 3 raised to the power negative 2 | 3 verhef tot die mag negatiewe 2 |
8 | 3−2.0 | 3 raised to the power negative 2.0 | 3 verhef tot die mag negatiewe 2,0 |
9 | 4x | 4 raised to the power x | 4 verhef tot die mag x |
10 | 3y+2 | 3 raised to the power y plus 2 | 3 verhef tot die mag y plus 2 |
11 | (2y−3)3z+8 | open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8 | links hakkie, 2 y, minus 3, regs hakkie, verhef tot die mag 3 z plus 8 |
12 | p12 | p sub 1, raised to the power 2 | p onderskrif 1, verhef tot die mag 2 |
13 | p13 | p sub 1, raised to the power 3 | p onderskrif 1, verhef tot die mag 3 |
14 | p14 | p sub 1, raised to the power 4 | p onderskrif 1, verhef tot die mag 4 |
15 | p110 | p sub 1, raised to the power 10 | p onderskrif 1, verhef tot die mag 10 |
16 | p1x+1 | p sub 1, raised to the power x plus 1 | p onderskrif 1, verhef tot die mag x plus 1 |
17 | px12 | p sub, x sub 1, raised to the power 2 | p onderskrif, x onderskrif 1, verhef tot die mag 2 |
18 | px13 | p sub, x sub 1, raised to the power 3 | p onderskrif, x onderskrif 1, verhef tot die mag 3 |
19 | px14 | p sub, x sub 1, raised to the power 4 | p onderskrif, x onderskrif 1, verhef tot die mag 4 |
20 | px110 | p sub, x sub 1, raised to the power 10 | p onderskrif, x onderskrif 1, verhef tot die mag 10 |
21 | px1y+1 | p sub, x sub 1, raised to the power y plus 1 | p onderskrif, x onderskrif 1, verhef tot die mag y plus 1 |
22 | 322 | 3 raised to the exponent, 2 raised to the power 2, end exponent | 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent |
23 | 32x2 | 3 raised to the exponent, 2 x raised to the power 2, end exponent | 3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent |
24 | 322 | 3 raised to the exponent, 2 raised to the power 2, end exponent | 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent |
25 | 32x2 | 3 raised to the exponent, 2 x raised to the power 2, end exponent | 3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent |
26 | 523 | 5 raised to the exponent, 2 raised to the power 3, end exponent | 5 verhef tot die eksponent, 2 verhef tot die mag 3, end eksponent |
27 | 52x3 | 5 raised to the exponent, 2 x raised to the power 3, end exponent | 5 verhef tot die eksponent, 2 x verhef tot die mag 3, end eksponent |
28 | 322+1 | 3 raised to the exponent, 2 raised to the power 2, plus 1, end exponent | 3 verhef tot die eksponent, 2 verhef tot die mag 2, plus 1, end eksponent |
29 | 322+1 | 3 raised to the exponent, 2 raised to the power 2, end exponent, plus 1 | 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent, plus 1 |
30 | 2x2+3x3 | 2 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent | 2 verhef tot die eksponent, x verhef tot die mag 2, plus 3 x verhef tot die mag 3, end eksponent |
31 | 334 | 3 raised to the exponent, 3 raised to the power 4, end exponent | 3 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent |
32 | 334+2 | 3 raised to the exponent, 3 raised to the power 4, plus 2, end exponent | 3 verhef tot die eksponent, 3 verhef tot die mag 4, plus 2, end eksponent |
33 | 334+2 | 3 raised to the exponent, 3 raised to the power 4, end exponent, plus 2 | 3 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent, plus 2 |
34 | 2x4 | 2 raised to the exponent, x raised to the power 4, end exponent | 2 verhef tot die eksponent, x verhef tot die mag 4, end eksponent |
35 | 210x+3 | 2 raised to the exponent, 10 raised to the power x plus 3, end exponent | 2 verhef tot die eksponent, 10 verhef tot die mag x plus 3, end eksponent |
36 | 3310 | 3 raised to the exponent, 3 raised to the power 10, end exponent | 3 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent |
37 | 3310+1 | 3 raised to the exponent, 3 raised to the power 10, plus 1, end exponent | 3 verhef tot die eksponent, 3 verhef tot die mag 10, plus 1, end eksponent |
38 | 3310+1 | 3 raised to the exponent, 3 raised to the power 10, end exponent, plus 1 | 3 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent, plus 1 |
39 | 3(x+1)2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 2, end eksponent |
40 | 3(x+1)10 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 10, end eksponent |
41 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y plus 2, end eksponent |
42 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, plus 2, end eksponent |
43 | 3(x+1)y+2 | 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 2 | 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, end eksponent, plus 2 |
44 | e−12x2 | e raised to the exponent, negative one half x raised to the power 2, end exponent | e verhef tot die eksponent, negatiewe een helfte x verhef tot die mag 2, end eksponent |
45 | e−12(x−μσ)2 | e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponent | e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, verhef tot die mag 2, end eksponent |
0 | 12 | one half | een helfte |
1 | 1232 | 12 over 32 | 12 oor 32 |
2 | xy | x over y | x oor y |
3 | 2x3y | 2 x over 3 y | 2 x oor 3 y |
4 | xycd | x y over c d | x y oor c d |
5 | 1213 | one half over one third | een helfte oor een derde |
6 | −xy | negative x over y | negatiewe x oor y |
7 | −2x3y | negative 2 x over 3 y | negatiewe 2 x oor 3 y |
8 | xy−cd | x y over negative c d | x y oor negatiewe c d |
9 | 12−13 | one half over negative one third | een helfte oor negatiewe een derde |
10 | 2+313 | the fraction with numerator 2 plus 3, and denominator 13 | die breuk met teller 2 plus 3, en noemer 13 |
11 | x+y2 | the fraction with numerator x plus y, and denominator 2 | die breuk met teller x plus y, en noemer 2 |
12 | x+yx−y | the fraction with numerator x plus y, and denominator x minus y | die breuk met teller x plus y, en noemer x minus y |
13 | x+yx−y+23 | the fraction with numerator x plus y, and denominator x minus y, plus two thirds | die breuk met teller x plus y, en noemer x minus y, plus twee derdes |
14 | milesgallon | miles over gallon | miles oor gallon |
15 | 2miles3gallons | 2 miles over 3 gallons | 2 miles oor 3 gallons |
16 | 2miles3gallons | 2 miles over 3 gallons | 2 miles oor 3 gallons |
17 | riserun | rise over run | rise oor run |
18 | successful outcomestotal outcomes | successful outcomes over total outcomes | successful outcomes oor total outcomes |
19 | 6ways of rolling a 736ways of rolling the pair of dice | 6 ways of rolling a 7 over 36 ways of rolling the pair of dice | 6 ways of rolling a 7 oor 36 ways of rolling the pair of dice |
20 | 1213 | one half over one third | een helfte oor een derde |
21 | 1213 | the fraction with numerator 1, and denominator, 2 over one third | die breuk met teller 1, en noemer, 2 oor een derde |
22 | 123 | one half over 3 | een helfte oor 3 |
23 | 123 | 1 over two thirds | 1 oor twee derdes |
24 | 11321651 | the fraction with numerator, 11 over 32, and denominator, 16 over 51 | die breuk met teller, 11 oor 32, en noemer, 16 oor 51 |
25 | 11321651 | the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51 | die breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51 |
26 | 1+4x2 | the fraction with numerator 1 plus, 4 over x, and denominator 2 | die breuk met teller 1 plus, 4 oor x, en noemer 2 |
27 | 32+4x | the fraction with numerator 3, and denominator 2 plus, 4 over x | die breuk met teller 3, en noemer 2 plus, 4 oor x |
28 | 102212 | the fraction with numerator, 10 over 22, and denominator one half | die breuk met teller, 10 oor 22, en noemer een helfte |
29 | 1+231−23 | the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds | die breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes |
30 | 1+x21−x2 | the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2 | die breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2 |
31 | x+1x−1+1x+1 | the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1 | die breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1 |
32 | x+1x−4+12x+116 | the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16 | die breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16 |
33 | 1+x1+2x | 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x | 1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x |
34 | 1+x+31+2x+3 | 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3 | 1 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3 |
35 | 1+11+11+11+1 | 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1 | 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1 |
36 | 1+11+11+11+⋯ | 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot | 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses |
37 | a0+1a1+1a2+1a3+⋯ | a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot | a onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses |
38 | f(x)g(x) | f of x, over g of x | f van x, oor g van x |
39 | f(x)+g(x)g(x) | the fraction with numerator f of x, plus g of x, and denominator g of x | die breuk met teller f van x, plus g van x, en noemer g van x |
40 | f(x+1)g(x) | the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of x | die breuk met teller f van, links hakkie, x plus 1, regs hakkie, en noemer g van x |
41 | f(x)2 | f of x, over 2 | f van x, oor 2 |
42 | 2f(x) | 2 over f of x | 2 oor f van x |
43 | 2g(x)+g(x+1) | the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close paren | die breuk met teller 2, en noemer g van x, plus g van, links hakkie, x plus 1, regs hakkie |
44 | sinxcosx | sine x over cosine x | sinus x oor kosinus x |
45 | sinx+cosxcosx | the fraction with numerator sine x plus cosine x, and denominator cosine x | die breuk met teller sinus x plus kosinus x, en noemer kosinus x |
46 | sin2xcos3x | sine 2 x over cosine 3 x | sinus 2 x oor kosinus 3 x |
47 | sin(x+y)cos(x+y) | the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close paren | die breuk met teller, die sinus van, links hakkie, x plus y, regs hakkie, en noemer, die kosinus van, links hakkie, x plus y, regs hakkie |
48 | f(2x)g(3x) | f of 2 x, over g of 3 x | f van 2 x, oor g van 3 x |
49 | logxlogy | log x over log y | logaritme x oor logaritme y |
50 | log2xlog3y | log 2 x over log 3 y | logaritme 2 x oor logaritme 3 y |
51 | log10xlog5y | the log base 10 of, x, over, the log base 5 of, y | die logaritme basis 10 van, x, oor, die logaritme basis 5 van, y |
52 | log102xlog53y | the log base 10 of, 2 x, over, the log base 5 of, 3 y | die logaritme basis 10 van, 2 x, oor, die logaritme basis 5 van, 3 y |
53 | log(x+1)logy | the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log y | die breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer logaritme y |
54 | f1(x)g1(x) | f sub 1, of x, over, g sub 1, of x | f onderskrif 1, van x, oor, g onderskrif 1, van x |
0 | 12 | one half | een helfte |
1 | 1232 | 12 over 32, end fraction | 12 oor 32, end breuk |
2 | 2+313 | the fraction with numerator 2 plus 3, and denominator 13, end fraction | die breuk met teller 2 plus 3, en noemer 13, end breuk |
3 | x+y2 | the fraction with numerator x plus y, and denominator 2, end fraction | die breuk met teller x plus y, en noemer 2, end breuk |
4 | x+yx−y | the fraction with numerator x plus y, and denominator x minus y, end fraction | die breuk met teller x plus y, en noemer x minus y, end breuk |
5 | x+yx−y+23 | the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirds | die breuk met teller x plus y, en noemer x minus y, end breuk, plus twee derdes |
6 | milesgallons | miles over gallons | miles oor gallons |
7 | 2miles3gallons | 2 miles over 3 gallons | 2 miles oor 3 gallons |
8 | 1213 | one half over one third | een helfte oor een derde |
9 | 1213 | the fraction with numerator 1, and denominator, 2 over one third, end fraction | die breuk met teller 1, en noemer, 2 oor een derde, end breuk |
10 | 123 | one half over 3, end fraction | een helfte oor 3, end breuk |
11 | 123 | 1 over two thirds, end fraction | 1 oor twee derdes, end breuk |
12 | 11321651 | the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction | die breuk met teller, 11 oor 32, en noemer, 16 oor 51, end breuk |
13 | 11321651 | the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction | die breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51, end breuk |
14 | 1+4x2 | the fraction with numerator 1 plus, 4 over x, and denominator 2, end fraction | die breuk met teller 1 plus, 4 oor x, en noemer 2, end breuk |
15 | 32+4x | the fraction with numerator 3, and denominator 2 plus, 4 over x, end fraction | die breuk met teller 3, en noemer 2 plus, 4 oor x, end breuk |
16 | 102212 | the fraction with numerator, 10 over 22, and denominator one half, end fraction | die breuk met teller, 10 oor 22, en noemer een helfte, end breuk |
17 | 1+231−23 | the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fraction | die breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes, end breuk |
18 | 1+x21−x2 | the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fraction | die breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2, end breuk |
19 | x+1x−1+1x+1 | the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fraction | die breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1, end breuk |
20 | x+1x−4+12x+116 | the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fraction | die breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16, end breuk |
21 | 1+x1+2x | 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction | 1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x, end breuk |
22 | 1+x+31+2x+3 | 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction | 1 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3, end breuk |
23 | 1+11+11+11+1 | 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction | 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1, end breuk |
24 | 1+11+11+11+⋯ | 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction | 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses, end breuk |
25 | a0+1a1+1a2+1a3+⋯ | a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fraction | a onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses, end breuk |
0 | f(x) | f of x | f van x |
1 | g(x) | g of x | g van x |
2 | h(x) | h of x | h van x |
3 | f(2x) | f of 2 x | f van 2 x |
4 | g(−2x) | g of negative 2 x | g van negatiewe 2 x |
5 | h(12) | h of one half | h van een helfte |
6 | f(x+1)=f(x)+1 | f of, open paren, x plus 1, close paren, equals f of x, plus 1 | f van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van x, plus 1 |
7 | g(2x+1) | g of, open paren, 2 x, plus 1, close paren | g van, links hakkie, 2 x, plus 1, regs hakkie |
8 | g(x2) | g of, open paren, x squared, close paren | g van, links hakkie, x kwadraat, regs hakkie |
9 | f−1(x) | f inverse of x | f inverse van x |
10 | g−1(x) | g inverse of x | g inverse van x |
11 | h−1(x) | h inverse of x | h inverse van x |
12 | f−1(2x) | f inverse of 2 x | f inverse van 2 x |
13 | g−1(−2x) | g inverse of negative 2 x | g inverse van negatiewe 2 x |
14 | f−1(3x−1) | f inverse of, open paren, 3 x, minus 1, close paren | f inverse van, links hakkie, 3 x, minus 1, regs hakkie |
15 | g−1(x2) | g inverse of, open paren, x squared, close paren | g inverse van, links hakkie, x kwadraat, regs hakkie |
16 | h−1(12) | h inverse of one half | h inverse van een helfte |
17 | f−1(f(x)) | f inverse of, f of x | f inverse van, f van x |
18 | g−1(g(x)) | g inverse of, g of x | g inverse van, g van x |
19 | h−1(h(x)) | h inverse of, h of x | h inverse van, h van x |
20 | f−1(f(2x)) | f inverse of, f of 2 x | f inverse van, f van 2 x |
21 | g−1(g(−2x)) | g inverse of, g of negative 2 x | g inverse van, g van negatiewe 2 x |
22 | h−1(h(12)) | h inverse of, h of one half | h inverse van, h van een helfte |
23 | f−1(f(x+1))=x+1 | f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1 | f inverse van, links hakkie, f van, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1 |
24 | g−1(g(2x+1)) | g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close paren | g inverse van, links hakkie, g van, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie |
25 | g−1(g(x2)) | g inverse of, open paren, g of, open paren, x squared, close paren, close paren | g inverse van, links hakkie, g van, links hakkie, x kwadraat, regs hakkie, regs hakkie |
26 | f(f−1(x)) | f of, f inverse of x | f van, f inverse van x |
27 | g(g−1(x)) | g of, g inverse of x | g van, g inverse van x |
28 | h(h−1(x)) | h of, h inverse of x | h van, h inverse van x |
29 | f(f−1(2x)) | f of, f inverse of 2 x | f van, f inverse van 2 x |
30 | g(g−1(−2x)) | g of, g inverse of negative 2 x | g van, g inverse van negatiewe 2 x |
31 | f(f−1(3x−1)) | f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close paren | f van, links hakkie, f inverse van, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie |
32 | g(g−1(x2)) | g of, g inverse of, open paren, x squared, close paren | g van, g inverse van, links hakkie, x kwadraat, regs hakkie |
33 | h(h−1(12)) | h of, h inverse of one half | h van, h inverse van een helfte |
34 | f(g(x)) | f of, g of x | f van, g van x |
35 | f(g(x+1)) | f of, open paren, g of, open paren, x plus 1, close paren, close paren | f van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie |
36 | h(g(x)) | h of, g of x | h van, g van x |
37 | h(g(xx+1)) | h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren | h van, links hakkie, g van, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie |
38 | (f+g)(x)=f(x)+g(x) | open paren, f plus g, close paren, of x, equals f of x, plus g of x | links hakkie, f plus g, regs hakkie, van x, is gelyk aan f van x, plus g van x |
39 | (f+g)(x+1)=f(x+1)+g(x+1) | open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close paren | links hakkie, f plus g, regs hakkie, van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van, links hakkie, x plus 1, regs hakkie, plus g van, links hakkie, x plus 1, regs hakkie |
40 | (f⋅g)(x) | open paren, f times g, close paren, of x | links hakkie, f punt g, regs hakkie, van x |
41 | (f⋅g)(2x+5) | open paren, f times g, close paren, of, open paren, 2 x, plus 5, close paren | links hakkie, f punt g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie |
42 | (fg)(x)=f(x)g(x) | open paren, f over g, close paren, of x, equals, f of x, over g of x | links hakkie, f oor g, regs hakkie, van x, is gelyk aan, f van x, oor g van x |
43 | (fg)(2x+5)=f(2x+5)g(2x+5) | open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close paren | links hakkie, f oor g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller f van, links hakkie, 2 x, plus 5, regs hakkie, en noemer g van, links hakkie, 2 x, plus 5, regs hakkie |
44 | (f∘g)(x)=f(g(x)) | open paren, f composed with g, close paren, of x, equals f of, g of x | links hakkie, f ring g, regs hakkie, van x, is gelyk aan f van, g van x |
45 | 2f(x) | 2 f of x | 2 f van x |
46 | cf(x) | c f of x | c f van x |
47 | f2(x) | f squared of x | f kwadraat van x |
48 | f2(2x+1) | f squared of, open paren, 2 x, plus 1, close paren | f kwadraat van, links hakkie, 2 x, plus 1, regs hakkie |
49 | f3(x) | f cubed of x | f tot die mag drie van x |
50 | f3(2x+1) | f cubed of, open paren, 2 x, plus 1, close paren | f tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie |
51 | f4(x) | the fourth power of, f of x | die vierde mag van, f van x |
52 | f4(2x+1) | the fourth power of, f of, open paren, 2 x, plus 1, close paren | die vierde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie |
53 | f5(x) | the fifth power of, f of x | die vyfde mag van, f van x |
54 | f5(2x+1) | the fifth power of, f of, open paren, 2 x, plus 1, close paren | die vyfde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie |
55 | fn(x) | the n-th power of, f of x | die n-de mag van, f van x |
56 | fn(2x+1) | the n-th power of, f of, open paren, 2 x, plus 1, close paren | die n-de mag van, f van, links hakkie, 2 x, plus 1, regs hakkie |
57 | g2(x) | g squared of x | g kwadraat van x |
58 | g2(2x+1) | g squared of, open paren, 2 x, plus 1, close paren | g kwadraat van, links hakkie, 2 x, plus 1, regs hakkie |
59 | h3(x) | h cubed of x | h tot die mag drie van x |
60 | h3(2x+1) | h cubed of, open paren, 2 x, plus 1, close paren | h tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie |
61 | g4(x) | the fourth power of, g of x | die vierde mag van, g van x |
62 | g4(2x+1) | the fourth power of, g of, open paren, 2 x, plus 1, close paren | die vierde mag van, g van, links hakkie, 2 x, plus 1, regs hakkie |
63 | h5(x) | the fifth power of, h of x | die vyfde mag van, h van x |
64 | h5(2x+1) | the fifth power of, h of, open paren, 2 x, plus 1, close paren | die vyfde mag van, h van, links hakkie, 2 x, plus 1, regs hakkie |
65 | gn(x) | the n-th power of, g of x | die n-de mag van, g van x |
66 | gn(2x+1) | the n-th power of, g of, open paren, 2 x, plus 1, close paren | die n-de mag van, g van, links hakkie, 2 x, plus 1, regs hakkie |
67 | f1(x) | f sub 1, of x | f onderskrif 1, van x |
68 | g2(x3) | g sub 2, of, open paren, x cubed, close paren | g onderskrif 2, van, links hakkie, x tot die mag drie, regs hakkie |
69 | hn(3x−2) | h sub n, of, open paren, 3 x, minus 2, close paren | h onderskrif n, van, links hakkie, 3 x, minus 2, regs hakkie |
70 | f1−1(x) | f sub 1, inverse of x | f onderskrif 1, inverse van x |
71 | g2−1(2x+1) | g sub 2, inverse of, open paren, 2 x, plus 1, close paren | g onderskrif 2, inverse van, links hakkie, 2 x, plus 1, regs hakkie |
72 | hn−1(x) | h sub n, inverse of x | h onderskrif n, inverse van x |
73 | g1−1(g2(x)) | g sub 1, inverse of, g sub 2, of x | g onderskrif 1, inverse van, g onderskrif 2, van x |
74 | f1(g2−1(x)) | f sub 1, of, g sub 2, inverse of x | f onderskrif 1, van, g onderskrif 2, inverse van x |
75 | f(x,y) | f of, open paren, x comma y, close paren | f van, links hakkie, x komma y, regs hakkie |
76 | f(x,y,z) | f of, open paren, x comma y comma z, close paren | f van, links hakkie, x komma y komma z, regs hakkie |
77 | f(x+1,2y) | f of, open paren, x plus 1, comma, 2 y, close paren | f van, links hakkie, x plus 1, komma, 2 y, regs hakkie |
78 | f(2x,x+1,x2) | f of, open paren, 2 x, comma, x plus 1, comma, x squared, close paren | f van, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie |
0 | f(x) | f times x | f maal x |
1 | g(x) | g times x | g maal x |
2 | h(x) | h times x | h maal x |
3 | f(2x) | f times 2 x | f maal 2 x |
4 | g(−2x) | g times negative 2 x | g maal negatiewe 2 x |
5 | h(12) | h times one half | h maal een helfte |
6 | f(x+1)=f(x)+1 | f times, open paren, x plus 1, close paren, equals, f times x, plus 1 | f maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal x, plus 1 |
7 | g(2x+1) | g times, open paren, 2 x, plus 1, close paren | g maal, links hakkie, 2 x, plus 1, regs hakkie |
8 | g(x2) | g times, open paren, x squared, close paren | g maal, links hakkie, x kwadraat, regs hakkie |
9 | f−1(x) | f to the negative 1 power, times x | f tot die negatiewe 1 mag, maal x |
10 | g−1(x) | g to the negative 1 power, times x | g tot die negatiewe 1 mag, maal x |
11 | h−1(x) | h to the negative 1 power, times x | h tot die negatiewe 1 mag, maal x |
12 | f−1(2x) | f to the negative 1 power, times 2 x | f tot die negatiewe 1 mag, maal 2 x |
13 | g−1(−2x) | g to the negative 1 power, times negative 2 x | g tot die negatiewe 1 mag, maal negatiewe 2 x |
14 | f−1(3x−1) | f to the negative 1 power, times, open paren, 3 x, minus 1, close paren | f tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie |
15 | g−1(x2) | g to the negative 1 power, times, open paren, x squared, close paren | g tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie |
16 | h−1(12) | h to the negative 1 power, times one half | h tot die negatiewe 1 mag, maal een helfte |
17 | f−1(f(x)) | f to the negative 1 power, times, f times x | f tot die negatiewe 1 mag, maal, f maal x |
18 | g−1(g(x)) | g to the negative 1 power, times, g times x | g tot die negatiewe 1 mag, maal, g maal x |
19 | h−1(h(x)) | h to the negative 1 power, times, h times x | h tot die negatiewe 1 mag, maal, h maal x |
20 | f−1(f(2x)) | f to the negative 1 power, times, f times 2 x | f tot die negatiewe 1 mag, maal, f maal 2 x |
21 | g−1(g(−2x)) | g to the negative 1 power, times, g times negative 2 x | g tot die negatiewe 1 mag, maal, g maal negatiewe 2 x |
22 | h−1(h(12)) | h to the negative 1 power, times, h times one half | h tot die negatiewe 1 mag, maal, h maal een helfte |
23 | f−1(f(x+1))=x+1 | f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1 | f tot die negatiewe 1 mag, maal, links hakkie, f maal, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1 |
24 | g−1(g(2x+1)) | g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close paren | g tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie |
25 | g−1(g(x2)) | g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close paren | g tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, x kwadraat, regs hakkie, regs hakkie |
26 | f(f−1(x)) | f times, open paren, f to the negative 1 power, times x, close paren | f maal, links hakkie, f tot die negatiewe 1 mag, maal x, regs hakkie |
27 | g(g−1(x)) | g times, open paren, g to the negative 1 power, times x, close paren | g maal, links hakkie, g tot die negatiewe 1 mag, maal x, regs hakkie |
28 | h(h−1(x)) | h times, open paren, h to the negative 1 power, times x, close paren | h maal, links hakkie, h tot die negatiewe 1 mag, maal x, regs hakkie |
29 | f(f−1(2x)) | f times, open paren, f to the negative 1 power, times 2 x, close paren | f maal, links hakkie, f tot die negatiewe 1 mag, maal 2 x, regs hakkie |
30 | g(g−1(−2x)) | g times, open paren, g to the negative 1 power, times negative 2 x, close paren | g maal, links hakkie, g tot die negatiewe 1 mag, maal negatiewe 2 x, regs hakkie |
31 | f(f−1(3x−1)) | f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close paren | f maal, links hakkie, f tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie |
32 | g(g−1(x2)) | g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close paren | g maal, links hakkie, g tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie, regs hakkie |
33 | h(h−1(12)) | h times, open paren, h to the negative 1 power, times one half, close paren | h maal, links hakkie, h tot die negatiewe 1 mag, maal een helfte, regs hakkie |
34 | f(g(x)) | f times, g times x | f maal, g maal x |
35 | f(g(x+1)) | f times, open paren, g times, open paren, x plus 1, close paren, close paren | f maal, links hakkie, g maal, links hakkie, x plus 1, regs hakkie, regs hakkie |
36 | h(g(x)) | h times, g times x | h maal, g maal x |
37 | h(g(xx+1)) | h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren | h maal, links hakkie, g maal, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie |
38 | (f+g)(x)=f(x)+g(x) | open paren, f plus g, close paren, times x, equals, f times x, plus, g times x | links hakkie, f plus g, regs hakkie, maal x, is gelyk aan, f maal x, plus, g maal x |
39 | (f+g)(x+1)=f(x+1)+g(x+1) | open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close paren | links hakkie, f plus g, regs hakkie, maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal, links hakkie, x plus 1, regs hakkie, plus, g maal, links hakkie, x plus 1, regs hakkie |
40 | (f⋅g)(x) | open paren, f times g, close paren, times x | links hakkie, f punt g, regs hakkie, maal x |
41 | (f⋅g)(2x+5) | open paren, f times g, close paren, times, open paren, 2 x, plus 5, close paren | links hakkie, f punt g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie |
42 | (fg)(x)=f(x)g(x) | open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times x | links hakkie, f oor g, regs hakkie, maal x, is gelyk aan, die breuk met teller, f maal x, en noemer, g maal x |
43 | (fg)(2x+5)=f(2x+5)g(2x+5) | open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close paren | links hakkie, f oor g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller, f maal, links hakkie, 2 x, plus 5, regs hakkie, en noemer, g maal, links hakkie, 2 x, plus 5, regs hakkie |
44 | 2f(x) | 2, f times x | 2, f maal x |
45 | cf(x) | c, f times x | c, f maal x |
46 | f2(x) | f squared times x | f kwadraat maal x |
47 | f2(2x+1) | f squared times, open paren, 2 x, plus 1, close paren | f kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie |
48 | f3(x) | f cubed times x | f tot die mag drie maal x |
49 | f3(2x+1) | f cubed times, open paren, 2 x, plus 1, close paren | f tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie |
50 | f4(x) | f to the fourth power, times x | f tot die vierde mag, maal x |
51 | f4(2x+1) | f to the fourth power, times, open paren, 2 x, plus 1, close paren | f tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
52 | f5(x) | f to the fifth power, times x | f tot die vyfde mag, maal x |
53 | f5(2x+1) | f to the fifth power, times, open paren, 2 x, plus 1, close paren | f tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
54 | fn(x) | f to the n-th power, times x | f tot die n-de mag, maal x |
55 | fn(2x+1) | f to the n-th power, times, open paren, 2 x, plus 1, close paren | f tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
56 | g2(x) | g squared times x | g kwadraat maal x |
57 | g2(2x+1) | g squared times, open paren, 2 x, plus 1, close paren | g kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie |
58 | h3(x) | h cubed times x | h tot die mag drie maal x |
59 | h3(2x+1) | h cubed times, open paren, 2 x, plus 1, close paren | h tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie |
60 | g4(x) | g to the fourth power, times x | g tot die vierde mag, maal x |
61 | g4(2x+1) | g to the fourth power, times, open paren, 2 x, plus 1, close paren | g tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
62 | h5(x) | h to the fifth power, times x | h tot die vyfde mag, maal x |
63 | h5(2x+1) | h to the fifth power, times, open paren, 2 x, plus 1, close paren | h tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
64 | gn(x) | g to the n-th power, times x | g tot die n-de mag, maal x |
65 | gn(2x+1) | g to the n-th power, times, open paren, 2 x, plus 1, close paren | g tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
66 | f1(x) | f sub 1, times x | f onderskrif 1, maal x |
67 | g2(x3) | g sub 2, times, open paren, x cubed, close paren | g onderskrif 2, maal, links hakkie, x tot die mag drie, regs hakkie |
68 | hn(3x−2) | h sub n, times, open paren, 3 x, minus 2, close paren | h onderskrif n, maal, links hakkie, 3 x, minus 2, regs hakkie |
69 | f1−1(x) | f sub 1, to the negative 1 power, times x | f onderskrif 1, tot die negatiewe 1 mag, maal x |
70 | g2−1(2x+1) | g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close paren | g onderskrif 2, tot die negatiewe 1 mag, maal, links hakkie, 2 x, plus 1, regs hakkie |
71 | hn−1(x) | h sub n, to the negative 1 power, times x | h onderskrif n, tot die negatiewe 1 mag, maal x |
72 | g1−1(g2(x)) | g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close paren | g onderskrif 1, tot die negatiewe 1 mag, maal, links hakkie, g onderskrif 2, maal x, regs hakkie |
73 | f1(g2−1(x)) | f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close paren | f onderskrif 1, maal, links hakkie, g onderskrif 2, tot die negatiewe 1 mag, maal x, regs hakkie |
74 | f(x,y) | f times, open paren, x comma y, close paren | f maal, links hakkie, x komma y, regs hakkie |
75 | f(x,y,z) | f times, open paren, x comma y comma z, close paren | f maal, links hakkie, x komma y komma z, regs hakkie |
76 | f(x+1,2y) | f times, open paren, x plus 1, comma, 2 y, close paren | f maal, links hakkie, x plus 1, komma, 2 y, regs hakkie |
77 | f(2x,x+1,x2) | f times, open paren, 2 x, comma, x plus 1, comma, x squared, close paren | f maal, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie |
0 | 2(3) | 2 times 3 | 2 maal 3 |
1 | 2[3] | 2 times 3 | 2 maal 3 |
2 | 24(3) | 2 to the fourth power, times 3 | 2 tot die vierde mag, maal 3 |
3 | 2(3+4) | 2 times, open paren, 3 plus 4, close paren | 2 maal, links hakkie, 3 plus 4, regs hakkie |
4 | 2[3+4] | 2 times, open bracket, 3 plus 4, close bracket | 2 maal, links blokhakkie, 3 plus 4, regs blokhakkie |
5 | (3)(2) | 3 times 2 | 3 maal 2 |
6 | 2(3+4)2 | 2 times, open paren, 3 plus 4, close paren, squared | 2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat |
7 | (2+7)(3−6) | open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren | links hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie |
8 | [2+7][3−6] | open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket | links blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie |
9 | x(y+z) | x times, open paren, y plus z, close paren | x maal, links hakkie, y plus z, regs hakkie |
10 | 2(y+1) | 2 times, open paren, y plus 1, close paren | 2 maal, links hakkie, y plus 1, regs hakkie |
11 | (2−1)x | open paren, 2 minus 1, close paren, times x | links hakkie, 2 minus 1, regs hakkie, maal x |
12 | p1(3+7) | p sub 1, times, open paren, 3 plus 7, close paren | p onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie |
13 | p1a1p2a2 | p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power | p onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag |
14 | (x+y)−4(x−y)−4 | open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power | links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag |
15 | 24(x+y) | 2 raised to the 4 times, open paren, x plus y, close paren, power | 2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag |
16 | xy | x y | x y |
17 | x2y3 | x squared, y cubed | x kwadraat, y tot die mag drie |
18 | xy+1xy+2 | x raised to the y plus 1 power, x raised to the y plus 2 power | x verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag |
19 | ab=ab | the square root of a, the square root of b, equals the square root of a b | die vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b |
20 | 310=30 | the square root of 3, the square root of 10, equals the square root of 30 | die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 |
21 | 23 | 2 the square root of 3 | 2 die vierkantswortel van 3 |
22 | 1+23 | 1 plus 2 the square root of 3 | 1 plus 2 die vierkantswortel van 3 |
23 | f(x)=x2(x+1) | f of x, equals x squared times, open paren, x plus 1, close paren | f van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie |
24 | sinxcosy+cosxsiny | sine x cosine y, plus, cosine x sine y | sinus x kosinus y, plus, kosinus x sinus y |
25 | sin(x+y)cos(x+y) | the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close paren | die sinus van, links hakkie, x plus y, regs hakkie, die kosinus van, links hakkie, x plus y, regs hakkie |
26 | log10xy | the log base 10 of, x y | die logaritme basis 10 van, x y |
27 | log(x+y)=logxlogy | the log of, open paren, x plus y, close paren, equals, log x log y | die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y |
28 | (1352)(7401) | the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 | die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 |
29 | 2(3((4+5)+6)) | 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren | 2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie |
30 | 2[3((4+5)+6)] | 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket | 2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie |
31 | 2|x| | 2 times, the absolute value of x | 2 maal, die absolute waarde van x |
32 | |x||y| | the absolute value of x, times, the absolute value of y | die absolute waarde van x, maal, die absolute waarde van y |
33 | |x+1||y−1| | the absolute value of x plus 1, times, the absolute value of y minus 1 | die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1 |
34 | |x+1||y|−1 | the absolute value of x plus 1, times, the absolute value of y, minus 1 | die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1 |
35 | A=h(b1+b22) | A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren | A is gelyk aan h van, links hakkie, die breuk met teller, b onderskrif 1, plus, b onderskrif 2, en noemer 2, regs hakkie |
36 | a(0)=0(a)=0 | a of 0, equals 0 times a equals 0 | a van 0, is gelyk aan 0 maal a is gelyk aan 0 |
37 | a(−1)=−a | a of negative 1, equals negative a | a van negatiewe 1, is gelyk aan negatiewe a |
38 | B(2,6) | B of, open paren, 2 comma 6, close paren | B van, links hakkie, 2 komma 6, regs hakkie |
39 | p(w) | p of w | p van w |
40 | x(t)=2t+4 | x of t, equals 2 t, plus 4 | x van t, is gelyk aan 2 t, plus 4 |
41 | k(x)=(x+3)(x−5) | k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close paren | k van x, is gelyk aan, links hakkie, x plus 3, regs hakkie, maal, links hakkie, x minus 5, regs hakkie |
42 | T(t)=Ts+(T0−Ts)e−kt | T of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, power | T van t, is gelyk aan, T onderskrif s, plus, links hakkie, T onderskrif 0, minus, T onderskrif s, regs hakkie, maal e verhef tot die negatiewe k t, mag |
43 | V=lw(8) | V equals script l, w of 8 | V is gelyk aan skrif l, w van 8 |
0 | 2(3) | 2 times 3 | 2 maal 3 |
1 | 2[3] | 2 times 3 | 2 maal 3 |
2 | 24(3) | 2 to the fourth power, times 3 | 2 tot die vierde mag, maal 3 |
3 | 2(3+4) | 2 times, open paren, 3 plus 4, close paren | 2 maal, links hakkie, 3 plus 4, regs hakkie |
4 | 2[3+4] | 2 times, open bracket, 3 plus 4, close bracket | 2 maal, links blokhakkie, 3 plus 4, regs blokhakkie |
5 | (3)(2) | 3 times 2 | 3 maal 2 |
6 | 2(3+4)2 | 2 times, open paren, 3 plus 4, close paren, squared | 2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat |
7 | (2+7)(3−6) | open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren | links hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie |
8 | [2+7][3−6] | open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket | links blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie |
9 | x(y+z) | x times, open paren, y plus z, close paren | x maal, links hakkie, y plus z, regs hakkie |
10 | 2(y+1) | 2 times, open paren, y plus 1, close paren | 2 maal, links hakkie, y plus 1, regs hakkie |
11 | (2−1)x | open paren, 2 minus 1, close paren, times x | links hakkie, 2 minus 1, regs hakkie, maal x |
12 | p1(3+7) | p sub 1, times, open paren, 3 plus 7, close paren | p onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie |
13 | p1a1p2a2 | p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, power | p onderskrif 1, verhef tot die, a onderskrif 1, mag, maal, p onderskrif 2, verhef tot die, a onderskrif 2, mag |
14 | (x+y)−4(x−y)−4 | open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power | links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag |
15 | 24(x+y) | 2 raised to the 4 times, open paren, x plus y, close paren, power | 2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag |
16 | xy | x times y | x maal y |
17 | x2y3 | x squared times y cubed | x kwadraat maal y tot die mag drie |
18 | xy+1xy+2 | x raised to the y plus 1 power, times x raised to the y plus 2 power | x verhef tot die y plus 1 mag, maal x verhef tot die y plus 2 mag |
19 | ab=ab | the square root of a, times the square root of b, equals the square root of a times b | die vierkantswortel van a, maal die vierkantswortel van b, is gelyk aan die vierkantswortel van a maal b |
20 | 310=30 | the square root of 3, times the square root of 10, equals the square root of 30 | die vierkantswortel van 3, maal die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 |
21 | 23 | 2 times the square root of 3 | 2 maal die vierkantswortel van 3 |
22 | 1+23 | 1 plus 2 times the square root of 3 | 1 plus 2 maal die vierkantswortel van 3 |
23 | f(x)=x2(x+1) | f of x, equals x squared times, open paren, x plus 1, close paren | f van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie |
24 | sinxcosy+cosxsiny | sine x, times cosine y plus cosine x, times sine y | sinus x, maal kosinus y plus kosinus x, maal sinus y |
25 | sin(x+y)cos(x+y) | the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close paren | die sinus van, links hakkie, x plus y, regs hakkie, maal, die kosinus van, links hakkie, x plus y, regs hakkie |
26 | log10xy | the log base 10 of, x times y | die logaritme basis 10 van, x maal y |
27 | log(x+y)=logxlogy | the log of, open paren, x plus y, close paren, equals log x, times log y | die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan logaritme x, maal logaritme y |
28 | (1352)(7401) | the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 | die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 |
29 | 2(3((4+5)+6)) | 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren | 2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie |
30 | 2[3((4+5)+6)] | 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket | 2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie |
31 | 2|x| | 2 times, the absolute value of x | 2 maal, die absolute waarde van x |
32 | |x||y| | the absolute value of x, times, the absolute value of y | die absolute waarde van x, maal, die absolute waarde van y |
33 | |x+1||y−1| | the absolute value of x plus 1, times, the absolute value of y minus 1 | die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1 |
34 | |x+1||y|−1 | the absolute value of x plus 1, times, the absolute value of y, minus 1 | die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1 |
0 | 2(3) | 2, open paren, 3, close paren | 2, links hakkie, 3, regs hakkie |
1 | 2[3] | 2, open bracket, 3, close bracket | 2, links blokhakkie, 3, regs blokhakkie |
2 | 24(3) | 2 to the fourth power, open paren, 3, close paren | 2 tot die vierde mag, links hakkie, 3, regs hakkie |
3 | 2(3+4) | 2, open paren, 3 plus 4, close paren | 2, links hakkie, 3 plus 4, regs hakkie |
4 | 2[3+4] | 2, open bracket, 3 plus 4, close bracket | 2, links blokhakkie, 3 plus 4, regs blokhakkie |
5 | (3)(2) | open paren, 3, close paren, open paren, 2, close paren | links hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie |
6 | 2(3+4)2 | 2, open paren, 3 plus 4, close paren, squared | 2, links hakkie, 3 plus 4, regs hakkie, kwadraat |
7 | (2+7)(3−6) | open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren | links hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie |
8 | [2+7][3−6] | open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket | links blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie |
9 | x(y+z) | x, open paren, y plus z, close paren | x, links hakkie, y plus z, regs hakkie |
10 | 2(y+1) | 2, open paren, y plus 1, close paren | 2, links hakkie, y plus 1, regs hakkie |
11 | (2−1)x | open paren, 2 minus 1, close paren, x | links hakkie, 2 minus 1, regs hakkie, x |
12 | p1(3+7) | p sub 1, open paren, 3 plus 7, close paren | p onderskrif 1, links hakkie, 3 plus 7, regs hakkie |
13 | p1a1p2a2 | p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power | p onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag |
14 | (x+y)−4(x−y)−4 | open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power | links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag |
15 | 24(x+y) | 2 raised to the 4, open paren, x plus y, close paren, power | 2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag |
16 | xy | x y | x y |
17 | x2y3 | x squared y cubed | x kwadraat y tot die mag drie |
18 | xy+1xy+2 | x raised to the y plus 1 power, x raised to the y plus 2 power | x verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag |
19 | ab=ab | the square root of a, the square root of b, equals the square root of a b | die vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b |
20 | 310=30 | the square root of 3, the square root of 10, equals the square root of 30 | die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 |
21 | 23 | 2 the square root of 3 | 2 die vierkantswortel van 3 |
22 | 1+23 | 1 plus 2 the square root of 3 | 1 plus 2 die vierkantswortel van 3 |
23 | sinxcosy+cosxsiny | sine x cosine y, plus, cosine x sine y | sinus x kosinus y, plus, kosinus x sinus y |
24 | log10xy | the log base 10 of, x y | die logaritme basis 10 van, x y |
25 | log(x+y)=logxlogy | the log of, open paren, x plus y, close paren, equals, log x log y | die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y |
26 | (1352)(7401) | the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 | die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 |
27 | 2(3((4+5)+6)) | 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren | 2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie |
28 | 2[3((4+5)+6)] | 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket | 2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie |
29 | 2|x| | 2, the absolute value of x | 2, die absolute waarde van x |
30 | |x||y| | the absolute value of x, the absolute value of y | die absolute waarde van x, die absolute waarde van y |
31 | |x+1||y−1| | the absolute value of x plus 1, the absolute value of y minus 1 | die absolute waarde van x plus 1, die absolute waarde van y minus 1 |
32 | |x+1||y|−1 | the absolute value of x plus 1, the absolute value of y, minus 1 | die absolute waarde van x plus 1, die absolute waarde van y, minus 1 |
33 | f(x)=x2(x+1) | f of x, equals x squared, open paren, x plus 1, close paren | f van x, is gelyk aan x kwadraat, links hakkie, x plus 1, regs hakkie |
34 | log(x+y)=logxlogy | the log of, open paren, x plus y, close paren, equals, log x log y | die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y |
0 | 2(3) | 2, open paren, 3, close paren | 2, links hakkie, 3, regs hakkie |
1 | 2[3] | 2, open bracket, 3, close bracket | 2, links blokhakkie, 3, regs blokhakkie |
2 | 24(3) | 2 to the fourth power, open paren, 3, close paren | 2 tot die vierde mag, links hakkie, 3, regs hakkie |
3 | 2(3+4) | 2, open paren, 3 plus 4, close paren | 2, links hakkie, 3 plus 4, regs hakkie |
4 | 2[3+4] | 2, open bracket, 3 plus 4, close bracket | 2, links blokhakkie, 3 plus 4, regs blokhakkie |
5 | (3)(2) | open paren, 3, close paren, open paren, 2, close paren | links hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie |
6 | 2(3+4)2 | 2, open paren, 3 plus 4, close paren, squared | 2, links hakkie, 3 plus 4, regs hakkie, kwadraat |
7 | (2+7)(3−6) | open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren | links hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie |
8 | [2+7][3−6] | open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket | links blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie |
9 | x(y+z) | x, open paren, y plus z, close paren | x, links hakkie, y plus z, regs hakkie |
10 | 2(y+1) | 2, open paren, y plus 1, close paren | 2, links hakkie, y plus 1, regs hakkie |
11 | (2−1)x | open paren, 2 minus 1, close paren, x | links hakkie, 2 minus 1, regs hakkie, x |
12 | p1(3+7) | p sub 1, open paren, 3 plus 7, close paren | p onderskrif 1, links hakkie, 3 plus 7, regs hakkie |
13 | (x+y)−4(x−y)−4 | open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power | links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag |
14 | 24(x+y) | 2 raised to the 4, open paren, x plus y, close paren, power | 2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag |
15 | (1352)(7401) | the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 | die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 |
16 | 2(3((4+5)+6)) | 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren | 2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie |
17 | 2[3((4+5)+6)] | 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket | 2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie |
0 | logx | log x | logaritme x |
1 | log10x | the log base 10 of, x | die logaritme basis 10 van, x |
2 | logbax=logba+logbx | the log base b of, a x, equals, the log base b of, a, plus, the log base b of, x | die logaritme basis b van, a x, is gelyk aan, die logaritme basis b van, a, plus, die logaritme basis b van, x |
3 | logbST=logbS−logbT | the log base b of, S over T, equals, the log base b of, S, minus, the log base b of, T | die logaritme basis b van, S oor T, is gelyk aan, die logaritme basis b van, S, minus, die logaritme basis b van, T |
4 | logb(xk)=klogbx | the log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, x | die logaritme basis b van, links hakkie, x tot die k-de mag, regs hakkie, is gelyk aan k, die logaritme basis b van, x |
5 | 10log10x=x | 10 raised to the log base 10 of, x, power, equals x | 10 verhef tot die logaritme basis 10 van, x, mag, is gelyk aan x |
6 | log1010x=x | the log base 10 of, 10 to the x-th power, equals x | die logaritme basis 10 van, 10 tot die x-de mag, is gelyk aan x |
7 | 10log105=5 | 10 raised to the log base 10 of, 5, power, equals 5 | 10 verhef tot die logaritme basis 10 van, 5, mag, is gelyk aan 5 |
8 | log10103=3 | the log base 10 of, 10 cubed, equals 3 | die logaritme basis 10 van, 10 tot die mag drie, is gelyk aan 3 |
9 | logax=logbxlogba | the log base a of, x, equals, the log base b of, x, over, the log base b of, a | die logaritme basis a van, x, is gelyk aan, die logaritme basis b van, x, oor, die logaritme basis b van, a |
10 | log1018log103=log318 | the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18 | die logaritme basis 10 van, 18, oor, die logaritme basis 10 van, 3, is gelyk aan, die logaritme basis 3 van, 18 |
11 | logxloga | log x over log a | logaritme x oor logaritme a |
12 | log(x+1) | the log of, open paren, x plus 1, close paren | die logaritme van, links hakkie, x plus 1, regs hakkie |
13 | log(x+1)2 | the log of, open paren, x plus 1, close paren, squared | die logaritme van, links hakkie, x plus 1, regs hakkie, kwadraat |
14 | log(xy) | log x y | logaritme x y |
15 | log(x+1)log(x+2) | the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close paren | die breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme van, links hakkie, x plus 2, regs hakkie |
16 | log6(x+1)log6(x+2) | the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close paren | die breuk met teller, die logaritme basis 6 van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme basis 6 van, links hakkie, x plus 2, regs hakkie |
17 | log40+log60log5 | the fraction with numerator log 40 plus log 60, and denominator log 5 | die breuk met teller logaritme 40 plus logaritme 60, en noemer logaritme 5 |
18 | log340+log360log35 | the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5 | die breuk met teller, die logaritme basis 3 van, 40, plus, die logaritme basis 3 van, 60, en noemer, die logaritme basis 3 van, 5 |
19 | log(34129)=4log3+9log12 | the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12 | die logaritme van, links hakkie, 3 tot die vierde mag, 12 tot die negende mag, regs hakkie, is gelyk aan 4 logaritme 3, plus 9 logaritme 12 |
20 | log(xy) | the log of, open paren, x over y, close paren | die logaritme van, links hakkie, x oor y, regs hakkie |
21 | log(34810)=4log3−10log8 | the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8 | die logaritme van, links hakkie, die breuk met teller 3 tot die vierde mag, en noemer 8 tot die tiende mag, regs hakkie, is gelyk aan 4 logaritme 3, minus 10 logaritme 8 |
22 | 10logx | 10 raised to the log x power | 10 verhef tot die logaritme x mag |
23 | lnx | l n x | l n x |
24 | lnx−ln(x−1)=ln(xx−1) | l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close paren | l n x, minus l n van, links hakkie, x minus 1, regs hakkie, is gelyk aan l n van, links hakkie, die breuk met teller x, en noemer x minus 1, regs hakkie |
25 | ln(ex)=x | l n of, open paren, e to the x-th power, close paren, equals x | l n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x |
26 | elnx=x | e raised to the l n x power, equals x | e verhef tot die l n x mag, is gelyk aan x |
27 | ln(ex)=x | l n of, open paren, e to the x-th power, close paren, equals x | l n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x |
28 | eln4=4 | e raised to the l n 4 power, equals 4 | e verhef tot die l n 4 mag, is gelyk aan 4 |
29 | ln40ln5=log540 | l n 40, over l n 5, equals, the log base 5 of, 40 | l n 40, oor l n 5, is gelyk aan, die logaritme basis 5 van, 40 |
30 | ln40+ln60ln5 | the fraction with numerator l n 40, plus l n 60, and denominator l n 5 | die breuk met teller l n 40, plus l n 60, en noemer l n 5 |
0 | (2175) | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
1 | [2175] | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
2 | (314026) | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
3 | [314026] | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
4 | (123) | the 3 by 1 column matrix. 1, 2, 3 | die 3 by 1 kolom matriks. 1, 2, 3 |
5 | [123] | the 3 by 1 column matrix. 1, 2, 3 | die 3 by 1 kolom matriks. 1, 2, 3 |
6 | (35) | the 1 by 2 row matrix. 3, 5 | die 1 by 2 ry matriks. 3, 5 |
7 | [35] | the 1 by 2 row matrix. 3, 5 | die 1 by 2 ry matriks. 3, 5 |
8 | (3) | the 1 by 1 matrix with entry 3 | die 1 by 1 matriks met waarde 3 |
9 | (3) | the 1 by 1 matrix with entry 3 | die 1 by 1 matriks met waarde 3 |
10 | (x+1x−1) | the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 | die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1 |
11 | (3612) | the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 | die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2 |
12 | (x+12x) | the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x | die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x |
13 | (3612) | the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 | die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2 |
14 | (241352147) | the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
15 | (0343210930216290) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
16 | (2105334270) | the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 | die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0 |
17 | (13422105) | the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 | die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 |
18 | (2175+x) | the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
19 | (31−x4026) | the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
20 | (2x175) | the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
21 | (2xy1223) | the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
22 | (12233415) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
23 | (b11b12b21b22) | the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 | die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2 |
24 | 3(2175)(314026) | 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
25 | (12233415)(31−x4026) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
26 | (0343210930216290)(13422105) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 |
27 | |2175| | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
28 | det(2175) | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
29 | |241352147| | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
30 | det(241352147) | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
31 | |0343210930216290| | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
32 | det(0343210930216290) | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
33 | |2175+x| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
34 | det(2175+x) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
35 | |2x175| | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
36 | det(2x175) | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
37 | |2xy1223| | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
38 | det(2xy1223) | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
39 | |12233415| | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
40 | det(12233415) | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
0 | (2175) | the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
1 | [2175] | the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
2 | (314026) | the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
3 | [314026] | the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
4 | (123) | the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 | die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 |
5 | [123] | the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 | die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 |
6 | (35) | the 1 by 2 row matrix. Column 1: 3 Column 2: 5 | die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5 |
7 | [35] | the 1 by 2 row matrix. Column 1: 3 Column 2: 5 | die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5 |
8 | (1234) | the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 | die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4 |
9 | [1234] | the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 | die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4 |
10 | (1234) | the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 | die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4 |
11 | [1234] | the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 | die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4 |
12 | (x+1x−1) | the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 | die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1 |
13 | (3612) | the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 | die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2 |
14 | (x+12x) | the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x | die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x |
15 | (3612) | the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 | die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2 |
16 | (241352147) | the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 | die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 |
17 | (0343210930216290) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
18 | (2105334270) | the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 | die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0 |
19 | (13422105) | the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 | die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 |
20 | (2175+x) | the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
21 | (31−x4026) | the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
22 | (2x175) | the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
23 | (2xy1223) | the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds | die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes |
24 | (12233415) | the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth | die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde |
25 | (b11b12b21b22) | the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2 | die 2 by 2 matriks. Ry 1: Kolom 1, b onderskrif 1 1; Kolom 2, b onderskrif 1 2. Ry 2: Kolom 1, b onderskrif 2 1; Kolom 2, b onderskrif 2 2 |
26 | 3(2175)(314026) | 3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | 3 maal die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
27 | (12233415)(31−x4026) | the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 | die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 |
28 | (0343210930216290)(13422105) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 |
29 | |2175| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
30 | det(2175) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
31 | |241352147| | the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 | die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 |
32 | det(241352147) | the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 | die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 |
33 | |0343210930216290| | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
34 | det(0343210930216290) | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 |
35 | |2175+x| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
36 | det(2175+x) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x |
37 | |2x175| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
38 | det(2x175) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 |
39 | |2xy1223| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes |
40 | det(2xy1223) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes |
41 | |12233415| | the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde |
42 | det(12233415) | the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde |
0 | (2175) | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
1 | [2175] | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
2 | (314026) | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
3 | [314026] | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
4 | (123) | the 3 by 1 column matrix. 1, 2, 3 | die 3 by 1 kolom matriks. 1, 2, 3 |
5 | [123] | the 3 by 1 column matrix. 1, 2, 3 | die 3 by 1 kolom matriks. 1, 2, 3 |
6 | (35) | the 1 by 2 row matrix. 3, 5 | die 1 by 2 ry matriks. 3, 5 |
7 | [35] | the 1 by 2 row matrix. 3, 5 | die 1 by 2 ry matriks. 3, 5 |
8 | (x+1x−1) | the 2 by 1 column matrix. x plus 1, x minus 1 | die 2 by 1 kolom matriks. x plus 1, x minus 1 |
9 | (3612) | the 4 by 1 column matrix. 3, 6, 1, 2 | die 4 by 1 kolom matriks. 3, 6, 1, 2 |
10 | (x+12x) | the 1 by 2 row matrix. x plus 1, 2 x | die 1 by 2 ry matriks. x plus 1, 2 x |
11 | (3612) | the 1 by 4 row matrix. 3, 6, 1, 2 | die 1 by 4 ry matriks. 3, 6, 1, 2 |
12 | (241352147) | the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
13 | (0343210930216290) | the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 | die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 |
14 | (2105334270) | the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0 | die 2 by 5 matriks. Ry 1: 2, 1, 0, 5, 3 Ry 2: 3, 4, 2, 7, 0 |
15 | (13422105) | the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 | die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5 |
16 | (2175+x) | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x |
17 | (31−x4026) | the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 | die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6 |
18 | (2x175) | the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
19 | (2xy1223) | the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
20 | (12233415) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
21 | (b11b12b21b22) | the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 | die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2 |
22 | 3(2175)(314026) | 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 | 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 |
23 | (12233415)(31−x4026) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6 |
24 | (0343210930216290)(13422105) | the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 | die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0. maal die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5 |
25 | |2175| | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
26 | det(2175) | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 |
27 | |241352147| | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
28 | det(241352147) | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 |
29 | |0343210930216290| | the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 | die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 |
30 | det(0343210930216290) | the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 | die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 |
31 | |2175+x| | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x |
32 | det(2175+x) | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x |
33 | |2x175| | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
34 | det(2x175) | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 |
35 | |2xy1223| | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
36 | det(2xy1223) | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes |
37 | |12233415| | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
38 | det(12233415) | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde |
0 | (2175) | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks |
1 | [2175] | the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix | die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks |
2 | (314026) | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks |
3 | [314026] | the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix | die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks |
4 | (123) | the 3 by 1 column matrix. 1, 2, 3. end matrix | die 3 by 1 kolom matriks. 1, 2, 3. end matriks |
5 | [123] | the 3 by 1 column matrix. 1, 2, 3. end matrix | die 3 by 1 kolom matriks. 1, 2, 3. end matriks |
6 | (35) | the 1 by 2 row matrix. 3, 5. end matrix | die 1 by 2 ry matriks. 3, 5. end matriks |
7 | [35] | the 1 by 2 row matrix. 3, 5. end matrix | die 1 by 2 ry matriks. 3, 5. end matriks |
8 | (x+1x−1) | the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrix | die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1. end matriks |
9 | (3612) | the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix | die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2. end matriks |
10 | (x+12x) | the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrix | die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x. end matriks |
11 | (3612) | the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix | die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2. end matriks |
12 | (241352147) | the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix | die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks |
13 | (0343210930216290) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks |
14 | (2105334270) | the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix | die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0. end matriks |
15 | (13422105) | the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix | die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks |
16 | (2175+x) | the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix | die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks |
17 | (31−x4026) | the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix | die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks |
18 | (2x175) | the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix | die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks |
19 | (2xy1223) | the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix | die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks |
20 | (12233415) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks |
21 | (b11b12b21b22) | the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix | die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2. end matriks |
22 | 3(2175)(314026) | 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix | 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks |
23 | (12233415)(31−x4026) | the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix | die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks |
24 | (0343210930216290)(13422105) | the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix | die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks |
25 | |2175| | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. sluit determinant |
26 | det(2175) | the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix | die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks |
27 | |241352147| | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. sluit determinant |
28 | det(241352147) | the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix | die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks |
29 | |0343210930216290| | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. sluit determinant |
30 | det(0343210930216290) | the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix | die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks |
31 | |2175+x| | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinant | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. sluit determinant |
32 | det(2175+x) | the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix | die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks |
33 | |2x175| | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. sluit determinant |
34 | det(2x175) | the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix | die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks |
35 | |2xy1223| | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinant | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. sluit determinant |
36 | det(2xy1223) | the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix | die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks |
37 | |12233415| | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinant | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. sluit determinant |
38 | det(12233415) | the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix | die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks |
0 | x+y=72x+3y=17 | 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 | 2 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17 |
1 | x+y=72x+3y=17 | 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 | 2 lyne, Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17 |
2 | x+y=72x+3y=17 | 2 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 | 2 lyne, Lyn 1: x; plus; y; is gelyk aan; 7. Lyn 2: 2 x; plus; 3 y; is gelyk aan; 17 |
3 | Equation 1: x+y=7Equation 2: 2x+3y=17 | 2 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 | 2 lyne, Lyn 1: Equation 1 dubbelpunt x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt 2 x, plus 3 y, is gelyk aan 17 |
4 | Equation 1:x+y=7Equation 2:2x+3y=17 | 2 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 | 2 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y, is gelyk aan 17 |
5 | Equation 1:x+y=7Equation 2:2x+3y=17 | 2 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 | 2 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y; is gelyk aan; 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y; is gelyk aan; 17 |
6 | 4x+3y+2z=172x+4y+6z=63x+2y+5z=1 | 3 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 | 3 lyne, Lyn 1: 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: 3 x, plus 2 y, plus 5 z, is gelyk aan 1 |
7 | 4x+3y+2z=12x+4y+6z=63x+2y+5z=1 | 3 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 | 3 lyne, Lyn 1: 4 x; plus; 3 y; plus; 2 z; is gelyk aan; 1. Lyn 2: 2 x; plus; 4 y; plus; 6 z; is gelyk aan; 6. Lyn 3: 3 x; plus; 2 y; plus; 5 z; is gelyk aan; 1 |
8 | Equation 1: 4x+3y+2z=17Equation 2: 2x+4y+6z=6Equation 3: 3x+2y+5z=1 | 3 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 | 3 lyne, Lyn 1: Equation 1 dubbelpunt 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: Equation 2 dubbelpunt 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: Equation 3 dubbelpunt 3 x, plus 2 y, plus 5 z, is gelyk aan 1 |
9 | x≥0y≥03x−5y≤30 | 3 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 30 | 3 lyne, Lyn 1: x groter of gelyk aan 0. Lyn 2: y groter of gelyk aan 0. Lyn 3: 3 x, minus 5 y, kleiner of gelyk aan 30 |
10 | 3x+8=5x8=5x−3x8=2x4=x | 4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x | 4 lyne, Lyn 1: 3 x, plus 8 is gelyk aan 5 x. Lyn 2: 8 is gelyk aan 5 x, minus 3 x. Lyn 3: 8 is gelyk aan 2 x. Lyn 4: 4 is gelyk aan x |
11 | 3x+8=5x8=5x−3x8=2x4=x | 4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank | 4 lyne, Lyn 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Lyn 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Lyn 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Lyn 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg |
12 | Step 1: 3x+8=5xStep 2: 8=5x−3xStep 3: 8=2xStep 4: 4=x | 4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x | 4 lyne, Lyn 1: Step 1 dubbelpunt 3 x, plus 8 is gelyk aan 5 x. Lyn 2: Step 2 dubbelpunt 8 is gelyk aan 5 x, minus 3 x. Lyn 3: Step 3 dubbelpunt 8 is gelyk aan 2 x. Lyn 4: Step 4 dubbelpunt 4 is gelyk aan x |
13 | f(x)={−x if x<0x if x≥0 | f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 | f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0 |
14 | f(x)={−xif x<0xif x≥0 | f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 | f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0 |
0 | x+y=72x+3y=17 | 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 | 2 lyne, Lyn 1: x plus y, is gelyk aan, 7. Lyn 2: 2 x, plus 3 y, is gelyk aan, 17 |
1 | x+y=72x+3y=17 | 2 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 17 | 2 lyne, Lyn 1: x, plus, y, is gelyk aan, 7. Lyn 2: 2 x, plus, 3 y, is gelyk aan, 17 |
2 | Equation 1:x+y=7Equation 2:2x+3y=17 | 2 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 17 | 2 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan 17 |
3 | Equation 1:x+y=7Equation 2:2x+3y=17 | 2 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 17 | 2 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y, is gelyk aan, 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan, 17 |
4 | 4x+3y+2z=12x+4y+6z=63x+2y+5z=1 | 3 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 1 | 3 lyne, Lyn 1: 4 x, plus, 3 y, plus, 2 z, is gelyk aan, 1. Lyn 2: 2 x, plus, 4 y, plus, 6 z, is gelyk aan, 6. Lyn 3: 3 x, plus, 2 y, plus, 5 z, is gelyk aan, 1 |
5 | 3x+8=5x8=5x−3x8=2x4=x | 4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank | 4 lyne, Lyn 1: 3 x, plus, 8, is gelyk aan, 5 x, leeg, leeg. Lyn 2: leeg, leeg, 8, is gelyk aan, 5 x, minus, 3 x. Lyn 3: leeg, leeg, 8, is gelyk aan, 2 x, leeg, leeg. Lyn 4: leeg, leeg, 4, is gelyk aan, x, leeg, leeg |
6 | f(x)={−xif x<0xif x≥0 | f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 | f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x, if x kleiner as 0. Geval 2: x, if x groter of gelyk aan 0 |
0 | f(g(x)) | f of, g of x | f van, g van x |
1 | f(g(x+1)) | f of, open paren, g of, open paren, x plus 1, close paren, close paren | f van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie |
2 | 6−[2−(3+5)] | 6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket | 6 minus, links blokhakkie, 2 minus, links hakkie, 3 plus 5, regs hakkie, regs blokhakkie |
3 | 6−(2−(3+5)) | 6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren | 6 minus, links hakkie, 2 minus, tweede links hakkie, 3 plus 5, tweede regs hakkie, regs hakkie |
4 | 4[x+3(2x+1)] | 4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket | 4 maal, links blokhakkie, x plus 3 maal, links hakkie, 2 x, plus 1, regs hakkie, regs blokhakkie |
5 | 4(x+3(2x+1)) | 4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren | 4 maal, links hakkie, x plus 3 maal, tweede links hakkie, 2 x, plus 1, tweede regs hakkie, regs hakkie |
6 | 1+(2+(3+7)−(2+8)) | 1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren | 1 plus, links hakkie, 2 plus, tweede links hakkie, 3 plus 7, tweede regs hakkie, minus, tweede links hakkie, 2 plus 8, tweede regs hakkie, regs hakkie |
7 | 1+(2+(3−(4−5))) | 1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren | 1 plus, links hakkie, 2 plus, tweede links hakkie, 3 minus, derde links hakkie, 4 minus 5, derde regs hakkie, tweede regs hakkie, regs hakkie |
8 | ((2+(3+4)+5)+6+((7+(8+1))+2)) | open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close paren | links hakkie, tweede links hakkie, 2 plus, derde links hakkie, 3 plus 4, derde regs hakkie, plus 5, tweede regs hakkie, plus 6 plus, tweede links hakkie, derde links hakkie, 7 plus, vierde links hakkie, 8 plus 1, vierde regs hakkie, derde regs hakkie, plus 2, tweede regs hakkie, regs hakkie |
0 | 2 | the square root of 2 | die vierkantswortel van 2 |
1 | 3+2 | 3 plus the square root of 2 | 3 plus die vierkantswortel van 2 |
2 | 3±2 | 3 plus or minus the square root of 2 | 3 plus of minus die vierkantswortel van 2 |
3 | 3∓2 | 3 minus or plus the square root of 2 | 3 minus of plus die vierkantswortel van 2 |
4 | −2 | the negative square root of 2 | the negative square root of 2 |
5 | 3−2 | 3 minus the square root of 2 | 3 minus die vierkantswortel van 2 |
6 | 3+−2 | 3 plus the negative square root of 2 | 3 plus the negative square root of 2 |
7 | 3−−2 | 3 minus the negative square root of 2 | 3 minus the negative square root of 2 |
8 | 3+(−2) | 3 plus, open paren, the negative square root of 2, close paren | 3 plus, links hakkie, the negative square root of 2, regs hakkie |
9 | 3−(−2) | 3 minus, open paren, the negative square root of 2, close paren | 3 minus, links hakkie, the negative square root of 2, regs hakkie |
10 | x+1 | the square root of x plus 1 | die vierkantswortel van x plus 1 |
11 | x+1 | the square root of x, plus 1 | die vierkantswortel van x, plus 1 |
12 | −x | the negative square root of x | the negative square root of x |
13 | (x)2 | open paren, the square root of x, close paren, squared | links hakkie, die vierkantswortel van x, regs hakkie, kwadraat |
14 | −(x)2 | negative, open paren, the square root of x, close paren, squared | negatiewe, links hakkie, die vierkantswortel van x, regs hakkie, kwadraat |
15 | x2 | the square root of x, squared | die vierkantswortel van x, kwadraat |
16 | x2 | the square root of x squared | die vierkantswortel van x kwadraat |
17 | x2+y2 | the square root of x squared plus y squared | die vierkantswortel van x kwadraat plus y kwadraat |
18 | x12+x22 | the square root of, x sub 1, squared plus, x sub 2, squared | die vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat |
19 | (x2−x1)2+(y2−y1)2 | the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared | die vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat |
20 | 12 | the square root of one half | die vierkantswortel van een helfte |
21 | 2366 | the square root of, 23 over 66 | die vierkantswortel van, 23 oor 66 |
22 | x+12x+5 | the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 | die vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5 |
23 | −b±b2−4ac2a | the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a | die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a |
24 | y3 | the cube root of y | die derdemagswortel van y |
25 | n4 | the fourth root of n | die vierde wortel van n |
26 | 355 | the fifth root of 35 | die vyfde wortel van 35 |
27 | 1469 | the ninth root of 146 | die negende wortel van 146 |
28 | dn | the n-th root of d | die n-de wortel van d |
29 | 243m | the m-th root of 243 | die m-de wortel van 243 |
30 | 2ii | the i-th root of 2 to the i-th power | die i-de wortel van 2 tot die i-de mag |
31 | 125j | the j-th root of 125 | die j-de wortel van 125 |
32 | −y3 | negative the cube root of y | negatiewe die derdemagswortel van y |
33 | −n4 | negative the fourth root of n | negatiewe die vierde wortel van n |
0 | 2 | the positive square root of 2 | die positiewe vierkantswortel van 2 |
1 | 3+2 | 3 plus the positive square root of 2 | 3 plus die positiewe vierkantswortel van 2 |
2 | 3±2 | 3 plus or minus the square root of 2 | 3 plus of minus die vierkantswortel van 2 |
3 | 3∓2 | 3 minus or plus the square root of 2 | 3 minus of plus die vierkantswortel van 2 |
4 | −2 | the negative square root of 2 | the negative square root of 2 |
5 | 3−2 | 3 minus the positive square root of 2 | 3 minus die positiewe vierkantswortel van 2 |
6 | 3+−2 | 3 plus the negative square root of 2 | 3 plus the negative square root of 2 |
7 | 3−−2 | 3 minus the negative square root of 2 | 3 minus the negative square root of 2 |
8 | 3+(−2) | 3 plus, open paren, the negative square root of 2, close paren | 3 plus, links hakkie, the negative square root of 2, regs hakkie |
9 | 3−(−2) | 3 minus, open paren, the negative square root of 2, close paren | 3 minus, links hakkie, the negative square root of 2, regs hakkie |
10 | x+1 | the positive square root of x plus 1 | die positiewe vierkantswortel van x plus 1 |
11 | x+1 | the positive square root of x, plus 1 | die positiewe vierkantswortel van x, plus 1 |
12 | −x | the negative square root of x | the negative square root of x |
13 | (x)2 | open paren, the positive square root of x, close paren, squared | links hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat |
14 | (−x)2 | open paren, the negative square root of x, close paren, squared | links hakkie, the negative square root of x, regs hakkie, kwadraat |
15 | −(x)2 | negative, open paren, the positive square root of x, close paren, squared | negatiewe, links hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat |
16 | x2 | the positive square root of x, squared | die positiewe vierkantswortel van x, kwadraat |
17 | x2 | the positive square root of x squared | die positiewe vierkantswortel van x kwadraat |
18 | x2+y2 | the positive square root of x squared plus y squared | die positiewe vierkantswortel van x kwadraat plus y kwadraat |
19 | x12+x22 | the positive square root of, x sub 1, squared plus, x sub 2, squared | die positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat |
20 | (x2−x1)2+(y2−y1)2 | the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared | die positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat |
21 | 12 | the positive square root of one half | die positiewe vierkantswortel van een helfte |
22 | 2366 | the positive square root of, 23 over 66 | die positiewe vierkantswortel van, 23 oor 66 |
23 | x+12x+5 | the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 | die positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5 |
24 | −b±b2−4ac2a | the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a | die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a |
25 | y3 | the cube root of y | die derdemagswortel van y |
26 | n4 | the fourth root of n | die vierde wortel van n |
27 | 355 | the fifth root of 35 | die vyfde wortel van 35 |
28 | 1469 | the ninth root of 146 | die negende wortel van 146 |
29 | dn | the n-th root of d | die n-de wortel van d |
30 | 243m | the m-th root of 243 | die m-de wortel van 243 |
31 | 2ii | the i-th root of 2 to the i-th power | die i-de wortel van 2 tot die i-de mag |
32 | 125j | the j-th root of 125 | die j-de wortel van 125 |
33 | −y3 | negative the cube root of y | negatiewe die derdemagswortel van y |
34 | −n4 | negative the fourth root of n | negatiewe die vierde wortel van n |
0 | 2 | the square root of 2, end root | die vierkantswortel van 2, end wortel |
1 | 3+2 | 3 plus the square root of 2, end root | 3 plus die vierkantswortel van 2, end wortel |
2 | 3±2 | 3 plus or minus the square root of 2, end root | 3 plus of minus die vierkantswortel van 2, end wortel |
3 | 3∓2 | 3 minus or plus the square root of 2, end root | 3 minus of plus die vierkantswortel van 2, end wortel |
4 | −2 | the negative square root of 2, end root | the negative square root of 2, end wortel |
5 | 3−2 | 3 minus the square root of 2, end root | 3 minus die vierkantswortel van 2, end wortel |
6 | 3+−2 | 3 plus the negative square root of 2, end root | 3 plus the negative square root of 2, end wortel |
7 | 3−−2 | 3 minus the negative square root of 2, end root | 3 minus the negative square root of 2, end wortel |
8 | 3+(−2) | 3 plus, open paren, the negative square root of 2, end root, close paren | 3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie |
9 | 3−(−2) | 3 minus, open paren, the negative square root of 2, end root, close paren | 3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie |
10 | x+1 | the square root of x plus 1, end root | die vierkantswortel van x plus 1, end wortel |
11 | x+1 | the square root of x, end root, plus 1 | die vierkantswortel van x, end wortel, plus 1 |
12 | −x | the negative square root of x, end root | the negative square root of x, end wortel |
13 | (x)2 | open paren, the square root of x, end root, close paren, squared | links hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat |
14 | −(x)2 | negative, open paren, the square root of x, end root, close paren, squared | negatiewe, links hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat |
15 | x2 | the square root of x, end root, squared | die vierkantswortel van x, end wortel, kwadraat |
16 | x2 | the square root of x squared, end root | die vierkantswortel van x kwadraat, end wortel |
17 | x2+y2 | the square root of x squared plus y squared, end root | die vierkantswortel van x kwadraat plus y kwadraat, end wortel |
18 | x12+x22 | the square root of, x sub 1, squared plus, x sub 2, squared, end root | die vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel |
19 | (x2−x1)2+(y2−y1)2 | the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root | die vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel |
20 | 12 | the square root of one half, end root | die vierkantswortel van een helfte, end wortel |
21 | 2366 | the square root of, 23 over 66, end root | die vierkantswortel van, 23 oor 66, end wortel |
22 | x+12x+5 | the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root | die vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel |
23 | −b±b2−4ac2a | the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a | die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a |
24 | y3 | the cube root of y, end root | die derdemagswortel van y, end wortel |
25 | n4 | the fourth root of n, end root | die vierde wortel van n, end wortel |
26 | 355 | the fifth root of 35, end root | die vyfde wortel van 35, end wortel |
27 | 1469 | the ninth root of 146, end root | die negende wortel van 146, end wortel |
28 | dn | the n-th root of d, end root | die n-de wortel van d, end wortel |
29 | 243m | the m-th root of 243, end root | die m-de wortel van 243, end wortel |
30 | 2ii | the i-th root of 2 to the i-th power, end root | die i-de wortel van 2 tot die i-de mag, end wortel |
31 | 125j | the j-th root of 125, end root | die j-de wortel van 125, end wortel |
32 | −y3 | negative the cube root of y, end root | negatiewe die derdemagswortel van y, end wortel |
33 | −n4 | negative the fourth root of n, end root | negatiewe die vierde wortel van n, end wortel |
0 | 2 | the positive square root of 2, end root | die positiewe vierkantswortel van 2, end wortel |
1 | 3+2 | 3 plus the positive square root of 2, end root | 3 plus die positiewe vierkantswortel van 2, end wortel |
2 | 3±2 | 3 plus or minus the square root of 2, end root | 3 plus of minus die vierkantswortel van 2, end wortel |
3 | 3∓2 | 3 minus or plus the square root of 2, end root | 3 minus of plus die vierkantswortel van 2, end wortel |
4 | −2 | the negative square root of 2, end root | the negative square root of 2, end wortel |
5 | 3−2 | 3 minus the positive square root of 2, end root | 3 minus die positiewe vierkantswortel van 2, end wortel |
6 | 3+−2 | 3 plus the negative square root of 2, end root | 3 plus the negative square root of 2, end wortel |
7 | 3−−2 | 3 minus the negative square root of 2, end root | 3 minus the negative square root of 2, end wortel |
8 | 3+(−2) | 3 plus, open paren, the negative square root of 2, end root, close paren | 3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie |
9 | 3−(−2) | 3 minus, open paren, the negative square root of 2, end root, close paren | 3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie |
10 | x+1 | the positive square root of x plus 1, end root | die positiewe vierkantswortel van x plus 1, end wortel |
11 | x+1 | the positive square root of x, end root, plus 1 | die positiewe vierkantswortel van x, end wortel, plus 1 |
12 | −x | the negative square root of x, end root | the negative square root of x, end wortel |
13 | (x)2 | open paren, the positive square root of x, end root, close paren, squared | links hakkie, die positiewe vierkantswortel van x, end wortel, regs hakkie, kwadraat |
14 | (−x)2 | open paren, the negative square root of x, end root, close paren, squared | links hakkie, the negative square root of x, end wortel, regs hakkie, kwadraat |
15 | x2 | the positive square root of x, end root, squared | die positiewe vierkantswortel van x, end wortel, kwadraat |
16 | x2 | the positive square root of x squared, end root | die positiewe vierkantswortel van x kwadraat, end wortel |
17 | x2+y2 | the positive square root of x squared plus y squared, end root | die positiewe vierkantswortel van x kwadraat plus y kwadraat, end wortel |
18 | x12+x22 | the positive square root of, x sub 1, squared plus, x sub 2, squared, end root | die positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel |
19 | (x2−x1)2+(y2−y1)2 | the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root | die positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel |
20 | 12 | the positive square root of one half, end root | die positiewe vierkantswortel van een helfte, end wortel |
21 | 2366 | the positive square root of, 23 over 66, end root | die positiewe vierkantswortel van, 23 oor 66, end wortel |
22 | x+12x+5 | the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root | die positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel |
23 | −b±b2−4ac2a | the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a | die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a |
24 | y3 | the cube root of y, end root | die derdemagswortel van y, end wortel |
25 | n4 | the fourth root of n, end root | die vierde wortel van n, end wortel |
26 | 355 | the fifth root of 35, end root | die vyfde wortel van 35, end wortel |
27 | 1469 | the ninth root of 146, end root | die negende wortel van 146, end wortel |
28 | dn | the n-th root of d, end root | die n-de wortel van d, end wortel |
29 | 243m | the m-th root of 243, end root | die m-de wortel van 243, end wortel |
30 | 2ii | the i-th root of 2 to the i-th power, end root | die i-de wortel van 2 tot die i-de mag, end wortel |
31 | 125j | the j-th root of 125, end root | die j-de wortel van 125, end wortel |
32 | −y3 | negative the cube root of y, end root | negatiewe die derdemagswortel van y, end wortel |
33 | −n4 | negative the fourth root of n, end root | negatiewe die vierde wortel van n, end wortel |
0 | sinx | sine x | sinus x |
1 | cosx | cosine x | kosinus x |
2 | tanθ | tangent theta | tangens theta |
3 | secθ | secant theta | sekans theta |
4 | cscx | cosecant x | kosekans x |
5 | cotx | cotangent x | kotangens x |
6 | sin2x | sine squared x | sinus kwadraat x |
7 | cos3x | cosine cubed x | kosinus tot die mag drie x |
8 | tan2x | tangent squared x | tangens kwadraat x |
9 | sec3x | secant cubed x | sekans tot die mag drie x |
10 | csc2x | cosecant squared x | kosekans kwadraat x |
11 | cot2x | cotangent squared x | kotangens kwadraat x |
12 | sin2π | sine 2 pi | sinus 2 pi |
13 | sin(πk+π2) | the sine of, open paren, pi k, plus, pi over 2, close paren | die sinus van, links hakkie, pi k, plus, pi oor 2, regs hakkie |
14 | cosπ2 | the cosine of, pi over 2 | die kosinus van, pi oor 2 |
15 | sinπ2 | the sine of, pi over 2 | die sinus van, pi oor 2 |
16 | sinπ2 | sine pi over 2 | sinus pi oor 2 |
17 | 2sinπ | 2 over sine pi | 2 oor sinus pi |
18 | sinπ23 | the fraction with numerator, the sine of, pi over 2, and denominator 3 | die breuk met teller, die sinus van, pi oor 2, en noemer 3 |
19 | tan(−π) | tangent negative pi | tangens negatiewe pi |
20 | sin(x+π) | the sine of, open paren, x plus pi, close paren | die sinus van, links hakkie, x plus pi, regs hakkie |
21 | cos(x+π2) | the cosine of, open paren, x plus, pi over 2, close paren | die kosinus van, links hakkie, x plus, pi oor 2, regs hakkie |
22 | cos(π2+x) | the cosine of, open paren, pi over 2, plus x, close paren | die kosinus van, links hakkie, pi oor 2, plus x, regs hakkie |
23 | sin2x+cos2x=1 | sine squared x, plus, cosine squared x, equals 1 | sinus kwadraat x, plus, kosinus kwadraat x, is gelyk aan 1 |
24 | sin4x | the fourth power of sine x | die vierde mag van sinus x |
25 | cos5x | the fifth power of cosine x | die vyfde mag van kosinus x |
26 | tannx | the n-th power of tangent x | die n-de mag van tangens x |
27 | sinxcosx | sine x over cosine x | sinus x oor kosinus x |
28 | tan35° | tangent 35 degrees | tangens 35 grade |
29 | tan(∠DEF) | the tangent of, open paren, angle D E F, close paren | die tangens van, links hakkie, hoek D E F, regs hakkie |
30 | tan(∠D) | the tangent of, open paren, angle D, close paren | die tangens van, links hakkie, hoek D, regs hakkie |
31 | sin(x+y)=sinxcosy+cosxsiny | the sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine y | die sinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, sinus x kosinus y, plus, kosinus x sinus y |
32 | cos(x+y)=cosxcosy−sinxsiny | the cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine y | die kosinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, kosinus x kosinus y, minus, sinus x sinus y |
33 | tan(x+y)=tanx−tany1−tanxtany | the tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent y | die tangens van, links hakkie, x plus y, regs hakkie, is gelyk aan, die breuk met teller tangens x minus tangens y, en noemer 1 minus, tangens x tangens y |
34 | tan(π6+2π3)=tanπ6−tan2π31−tanπ6tan2π3 | the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3 | die tangens van, links hakkie, pi oor 6, plus, 2 pi oor 3, regs hakkie, is gelyk aan, die breuk met teller, die tangens van, pi oor 6, minus, die tangens van, 2 pi oor 3, en noemer 1 minus, die tangens van, pi oor 6, die tangens van, 2 pi oor 3 |
35 | tan2x=2tanx1−tan2x | tangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared x | tangens 2 x, is gelyk aan, die breuk met teller 2 tangens x, en noemer 1 minus, tangens kwadraat x |
36 | cos2x=2cos2x−1 | cosine 2 x, equals 2, cosine squared x, minus 1 | kosinus 2 x, is gelyk aan 2, kosinus kwadraat x, minus 1 |
37 | sinx2=±1−cosx2 | the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2 | die sinus van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 2 |
38 | tanx2=±1−cosx1+cosx | the tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine x | die tangens van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 1 plus kosinus x |
39 | cosxcosy=2cosx+y2cosx−y2 | cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2 | kosinus x kosinus y, is gelyk aan 2, die kosinus van, die breuk met teller x plus y, en noemer 2, die kosinus van, die breuk met teller x minus y, en noemer 2 |
40 | sin−1x | the inverse sine of x | die inverse sinus van x |
41 | cos−1x | the inverse cosine of x | die inverse kosinus van x |
42 | tan−1x | the inverse tangent of x | die inverse tangens van x |
43 | cot−1x | the inverse cotangent of x | die inverse kotangens van x |
44 | sec−1x | the inverse secant of x | die inverse sekans van x |
45 | csc−1x | the inverse cosecant of x | die inverse kosekans van x |
46 | sin−122 | the inverse sine of, the fraction with numerator the square root of 2, and denominator 2 | die inverse sinus van, die breuk met teller die vierkantswortel van 2, en noemer 2 |
47 | cos−112 | the inverse cosine of one half | die inverse kosinus van een helfte |
48 | tan−117 | the inverse tangent of 17 | die inverse tangens van 17 |
49 | cot−132 | the inverse cotangent of 32 | die inverse kotangens van 32 |
50 | sec−1100 | the inverse secant of 100 | die inverse sekans van 100 |
51 | csc−185 | the inverse cosecant of 85 | die inverse kosekans van 85 |
52 | sin−1(−x) | the inverse sine of negative x | die inverse sinus van negatiewe x |
53 | cos−1(−x) | the inverse cosine of negative x | die inverse kosinus van negatiewe x |
54 | tan−1(−x+12) | the inverse tangent of, open paren, negative x plus 12, close paren | die inverse tangens van, links hakkie, negatiewe x plus 12, regs hakkie |
55 | cot−1(−x−1) | the inverse cotangent of, open paren, negative x minus 1, close paren | die inverse kotangens van, links hakkie, negatiewe x minus 1, regs hakkie |
56 | sin−1(sin0) | the inverse sine of sine 0 | die inverse sinus van sinus 0 |
57 | csc−1(cscx) | the inverse cosecant of cosecant x | die inverse kosekans van kosekans x |
58 | cos(cos−1(−22)) | the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren | die kosinus van, links hakkie, die inverse kosinus van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie |
59 | cos(−cos−1(22)) | the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren | die kosinus van, links hakkie, negatiewe, die inverse kosinus van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie |
60 | sin−1(cosπ4) | the inverse sine of, open paren, the cosine of, pi over 4, close paren | die inverse sinus van, links hakkie, die kosinus van, pi oor 4, regs hakkie |
61 | sin(cos−112) | sine, the inverse cosine of one half | sinus, die inverse kosinus van een helfte |
62 | sin(tan−11) | sine, the inverse tangent of 1 | sinus, die inverse tangens van 1 |
63 | sin(−tan−11) | the sine of, open paren, negative, the inverse tangent of 1, close paren | die sinus van, links hakkie, negatiewe, die inverse tangens van 1, regs hakkie |
64 | sin(−tan−1(−1)) | the sine of, open paren, negative, the inverse tangent of negative 1, close paren | die sinus van, links hakkie, negatiewe, die inverse tangens van negatiewe 1, regs hakkie |
65 | sec−1(secx) | the inverse secant of secant x | die inverse sekans van sekans x |
66 | arcsinx | arc sine x | boog sinus x |
67 | arccosx | arc cosine x | boog kosinus x |
68 | arctanx | arc tangent x | boog tangens x |
69 | sinhx | hyperbolic sine of x | hiperboliese sinus van x |
70 | coshx | hyperbolic cosine of x | hiperboliese kosinus van x |
71 | tanhx | hyperbolic tangent of x | hiperboliese tangens van x |
72 | cothx | hyperbolic cotangent of x | hiperboliese kotangens van x |
73 | sechx | hyperbolic secant of x | hiperboliese sekans van x |
74 | cschx | hyperbolic cosecant of x | hiperboliese kosekans van x |
75 | sinh−1x | the inverse hyperbolic sine of x | die inverse hiperboliese sinus van x |
76 | cosh−1x | the inverse hyperbolic cosine of x | die inverse hiperboliese kosinus van x |
77 | tanh−1x | the inverse hyperbolic tangent of x | die inverse hiperboliese tangens van x |
78 | coth−1x | the inverse hyperbolic cotangent of x | die inverse hiperboliese kotangens van x |
79 | sech−1x | the inverse hyperbolic secant of x | die inverse hiperboliese sekans van x |
80 | csch−1x | the inverse hyperbolic cosecant of x | die inverse hiperboliese kosekans van x |
81 | sinh(sinh−1x) | hyperbolic sine of, the inverse hyperbolic sine of x | hiperboliese sinus van, die inverse hiperboliese sinus van x |
82 | cosh(cosh−1x) | hyperbolic cosine of, the inverse hyperbolic cosine of x | hiperboliese kosinus van, die inverse hiperboliese kosinus van x |
83 | tanh(tanh−1x) | hyperbolic tangent of, the inverse hyperbolic tangent of x | hiperboliese tangens van, die inverse hiperboliese tangens van x |
84 | coth(coth−1x) | hyperbolic cotangent of, the inverse hyperbolic cotangent of x | hiperboliese kotangens van, die inverse hiperboliese kotangens van x |
85 | sinh−1(sinhx) | the inverse hyperbolic sine of, hyperbolic sine of x | die inverse hiperboliese sinus van, hiperboliese sinus van x |
86 | cosh−1(coshx) | the inverse hyperbolic cosine of, hyperbolic cosine of x | die inverse hiperboliese kosinus van, hiperboliese kosinus van x |
87 | tanh−1(tanhx) | the inverse hyperbolic tangent of, hyperbolic tangent of x | die inverse hiperboliese tangens van, hiperboliese tangens van x |
88 | coth−1(cothx) | the inverse hyperbolic cotangent of, hyperbolic cotangent of x | die inverse hiperboliese kotangens van, hiperboliese kotangens van x |
0 | in2 | square inches | kwadraat duim |
1 | s2 | seconds to the second power | kwadraat sekondes |
2 | m2 | square meters | kwadraat meter |
3 | in3 | cubic inches | kubiek duim |
4 | s3 | seconds to the third power | kubiek sekondes |
5 | m3 | cubic meters | kubiek meter |
6 | in-1 | reciprocal inches | resiprook duim |
7 | in-1mm-1 | reciprocal inches per millimeter | resiprook duim per millimeter |
8 | inmm | inches per millimeter | duim per millimeter |
9 | km | kilometers | kilometer |
10 | A | amperes | ampere |
11 | Ω | ohms | ohm |
12 | kΩ | kilohms | kilohm |
13 | °C | Celsius | Selsius |
14 | minmin | min of minutes | min van minute |
15 | 3km | 3 kilometers | 3 kilometer |
16 | km+s | kilometers plus seconds | kilometer plus sekondes |
17 | km2 | square kilometers | kwadraat kilometer |
18 | m3 | cubic meters | kubiek meter |
19 | km4 | kilometers to the fourth power | kilometer tot die vierde mag |
20 | m-1 | reciprocal meters | resiprook meter |
21 | sm-1 | seconds per meter | sekondes per meter |
22 | sm-1 | seconds per meter to the negative 1 power | sekondes per meter tot die negatiewe 1 mag |
23 | sm-1 | seconds per meter to the negative 1 power | sekondes per meter tot die negatiewe 1 mag |
24 | 3m-1 | 3 reciprocal meters | 3 resiprook meter |
25 | kmh | kilometers per hour | kilometer per uur |
26 | Nkmh | Newtons kilometers per hour | Newton kilometer per uur |
27 | mkm | m over kilometers | m oor kilometer |
28 | 3kmh | 3 kilometers hours | 3 kilometer ure |
29 | s3mkmh | seconds 3 m kilometers hours | sekondes 3 m kilometer ure |
30 | kms23mkmh | kilometers seconds to the second power 3 m kilometers hours | kilometer kwadraat sekondes 3 m kilometer ure |
31 | 3mkmhNs2 | 3 m kilometers hours the fraction with numerator N and denominator seconds to the second power | 3 m kilometer ure die breuk met teller N en noemer kwadraat sekondes |
32 | 3mkmhNs2 | 3 m kilometers hours Newtons per second to the second power | 3 m kilometer ure Newton per kwadraat sekonde |
33 | 4⁢mm | 4 millimeters | 4 millimeter |
34 | 1⁢mm | 1 millimeter | 1 millimeter |
35 | 4mm | 4 millimeters | 4 millimeter |
36 | 1mm | 1 millimeter | 1 millimeter |
37 | m⁢s | meters seconds | meter sekondes |
38 | m⁢s | m seconds | m sekondes |
39 | m⁢s | meters s | meter s |
40 | ms | meters seconds | meter sekondes |
41 | ms | m seconds | m sekondes |
42 | ms | meters s | meter s |
43 | m⁢sl | meters seconds liters | meter sekondes lieters |
44 | 63360in=63360in.=63360″=63360inches=5280ft=5280ft.=5280′=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile | 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile | 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile |
45 | 8000li=8000li.=8000links=320rd=320rd.=320rods=80ch=80ch.=80chains=8fur=8fur.=8furlongs=1mi=1mi.=1mile | 8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile | 8000 links is gelyk aan 8000 links is gelyk aan 8000 links is gelyk aan 320 stawe is gelyk aan 320 stawe is gelyk aan 320 rods is gelyk aan 80 kettings is gelyk aan 80 kettings is gelyk aan 80 chains is gelyk aan 8 furlong is gelyk aan 8 furlong is gelyk aan 8 furlongs is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile |
46 | 43560sq ft=43560sq. ft.=43560ft2=43560′2=43560square feet=4840sq yd=4840sq. yd.=4840yd2=4840square yards=160sq rd=160sq. rd.=160rd2=160square rods=1ac=1ac.=1acre=1640sq mi=1640sq. mi.=1640mi2=1640square miles | 43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles | 43560 vierkant 'n voet is gelyk aan 43560 vierkant 'n voet is gelyk aan 43560 kwadraat voet is gelyk aan 43560 voet kwadraat is gelyk aan 43560 square feet is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 kwadraat jaart is gelyk aan 4840 square yards is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 kwadraat stawe is gelyk aan 160 square rods is gelyk aan 1 akker is gelyk aan 1 akker is gelyk aan 1 acre is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 kwadraat myl is gelyk aan 1 oor 640 square miles |
47 | 46656cu in=46656cu. in.=46656in3=46656″3=46656cubic inches=27cu ft=27cu. ft.=27ft3=27′3=27cubic feet=1cu yd=1cu. yd.=1yd3=1cubic yard | 46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard | 46656 kubieke duim is gelyk aan 46656 kubieke duim is gelyk aan 46656 kubiek duim is gelyk aan 46656 duim tot die mag drie is gelyk aan 46656 cubic inches is gelyk aan 27 kubieke voet is gelyk aan 27 kubieke voet is gelyk aan 27 kubiek voet is gelyk aan 27 voet tot die mag drie is gelyk aan 27 cubic feet is gelyk aan 1 kubieke jaart is gelyk aan 1 kubieke jaart is gelyk aan 1 kubiek jaart is gelyk aan 1 cubic yard |
48 | 1024fl dr=1024fl. dr.=1024fluid drams=768tsp=768tsp.=768teaspoons=256Tbsp=256Tbsp.=256tablespoons=128fl oz=128fl. oz.=128fluid ounces=16cp=16cp.=16cups=8pt=8pt.=8pints=4qt=4qt.=4quarts=1gal=1gal.=1gallon | 1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon | 1024 vloeibare dragmes is gelyk aan 1024 vloeibare dragmes is gelyk aan 1024 fluid drams is gelyk aan 768 teelepels is gelyk aan 768 teelepels is gelyk aan 768 teaspoons is gelyk aan 256 eetlepels is gelyk aan 256 eetlepels is gelyk aan 256 tablespoons is gelyk aan 128 vloeibare onse is gelyk aan 128 vloeibare onse is gelyk aan 128 fluid ounces is gelyk aan 16 koppies is gelyk aan 16 koppies is gelyk aan 16 cups is gelyk aan 8 pinte is gelyk aan 8 pinte is gelyk aan 8 pints is gelyk aan 4 kwarte is gelyk aan 4 kwarte is gelyk aan 4 quarts is gelyk aan 1 galon is gelyk aan 1 galon is gelyk aan 1 gallon |
49 | 256dr=256dr.=256drams=16oz=16oz.=16ounces=1#=1lb=1lb.=1pounds=100cwt=100cwt.=100hundredweights=2000tons | 256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons | 256 dragmes is gelyk aan 256 dragmes is gelyk aan 256 drams is gelyk aan 16 onse is gelyk aan 16 onse is gelyk aan 16 ounces is gelyk aan 1 # is gelyk aan 1 pond is gelyk aan 1 pond is gelyk aan 1 pounds is gelyk aan 100 honderdgewigte is gelyk aan 100 honderdgewigte is gelyk aan 100 hundredweights is gelyk aan 2000 tons |
50 | 63360in=63360in.=63360″=63360inches=5280ft=5280ft.=5280′=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile | 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile | 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile |
51 | 1J=1kg·m2·s-2 | 1 joule equals 1 kilogram times square meters times seconds to the negative 2 power | 1 joule is gelyk aan 1 kilogram dot kwadraat meter dot sekondes tot die negatiewe 2 mag |
52 | 1J=1kgm2s-2 | 1 joule equals 1 kilogram square meters seconds to the negative 2 power | 1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag |
53 | 1J=1·kg·m2·s-2 | 1 joule equals 1 kilogram square meters seconds to the negative 2 power | 1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag |
54 | in3 | cubic inches | kubiek duim |
55 | kmkgs2J | kilometers kilograms seconds to the second power per joule | kilometer kilogram kwadraat sekondes per joule |
56 | 3km1kgs2J | 3 kilometers 1 kilogram seconds to the second power over joules | 3 kilometer 1 kilogram kwadraat sekondes oor joule |
57 | 1kmkgs2J | 1 kilometer kilograms seconds to the second power over joules | 1 kilometer kilogram kwadraat sekondes oor joule |
58 | 1kmkgs25J | 1 kilometer kilograms seconds to the second power over 5 joules | 1 kilometer kilogram kwadraat sekondes oor 5 joule |
59 | km | kilometers | kilometer |
60 | 3kmkgs2J | 3 kilometers kilograms seconds to the second power joules | 3 kilometer kilogram kwadraat sekondes joule |
61 | 3kmkgs2J | 3 kilometers kilograms seconds to the second power joules | 3 kilometer kilogram kwadraat sekondes joule |
62 | 3km4kgs2J | 3 kilometers 4 kilograms seconds to the second power joules | 3 kilometer 4 kilogram kwadraat sekondes joule |
63 | 3km1kgs2J | 3 kilometers 1 kilogram seconds to the second power joules | 3 kilometer 1 kilogram kwadraat sekondes joule |
64 | 1kms+2kms+0kms+akms+ | 1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus | 1 kilometer sekondes plus 2 kilometer sekondes plus 0 kilometer sekondes plus a kilometer sekondes plus |
65 | 1km+2km+0km+akm | 1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers | 1 kilometer plus 2 kilometer plus 0 kilometer plus a kilometer |
66 | 123kg | 1 and two thirds kilograms | 1 en twee derdes kilogram |
67 | 123kgkm | 1 and two thirds kilograms kilometers | 1 en twee derdes kilogram kilometer |
68 | 1km2kgkm | 1 kilometer 2 kilograms kilometers | 1 kilometer 2 kilogram kilometer |
69 | 1kmkgs+2kmkgs+0kmkgs+akmkgs+ | 1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus | 1 kilometer kilogram sekondes plus 2 kilometer kilogram sekondes plus 0 kilometer kilogram sekondes plus a kilometer kilogram sekondes plus |
70 | 1$ | 1 dollar | 1 doller |
71 | $1 | 1 dollars | 1 dollers |
72 | $ | dollars | dollers |
73 | $ | dollars | dollers |
74 | 2$ | 2 dollars | 2 dollers |
75 | $2 | 2 dollars | 2 dollers |
76 | 1$+2$+0$+a$ | 1 dollar plus 2 dollars plus 0 dollars plus a dollars | 1 doller plus 2 dollers plus 0 dollers plus a dollers |
77 | 1$+$2+0$+$a | 1 dollar plus 2 dollars plus 0 dollars plus a dollars | 1 doller plus 2 dollers plus 0 dollers plus a dollers |
78 | 1€+2€+0€+a€ | 1 euro plus 2 euros plus 0 euros plus a euros | 1 euro plus 2 euros plus 0 euros plus a euros |
79 | 1£+2£+0£+a£ | 1 pound plus 2 pounds plus 0 pounds plus a pounds | 1 pond plus 2 ponde plus 0 ponde plus a ponde |