Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Auto.

0|x|the absolute value of xdie absolute waarde van x
1|x+1|the absolute value of x plus 1die absolute waarde van x plus 1
2|x|+1the absolute value of x, plus 1die absolute waarde van x, plus 1
3|x|+|y||z|the absolute value of x, plus, the absolute value of y, is greater than or equal to, the absolute value of zdie absolute waarde van x, plus, die absolute waarde van y, groter of gelyk aan, die absolute waarde van z
4|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
5|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
6|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
7|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
8|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
9|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
10|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_AbsEnd.

0|x|the absolute value of x, end absolute valuedie absolute waarde van x, end absolute waarde van
1|x+1|the absolute value of x plus 1, end absolute valuedie absolute waarde van x plus 1, end absolute waarde van
2|x|+1the absolute value of x, end absolute value, plus 1die absolute waarde van x, end absolute waarde van, plus 1
3|x|+|y||z|the absolute value of x, end absolute value, plus, the absolute value of y, end absolute value, is greater than or equal to, the absolute value of z, end absolute valuedie absolute waarde van x, end absolute waarde van, plus, die absolute waarde van y, end absolute waarde van, groter of gelyk aan, die absolute waarde van z, end absolute waarde van
4|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
5|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
6|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
7|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
8|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
9|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
10|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Cardinality.

0|S|the cardinality of Sdie kardinaliteit van S

Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Determinant.

0|M|the determinant of Mdie determinant van M

Afrikaans Clearspeak CapitalLetters rule tests. Locale: af, Style: Caps_Auto.

0sinAa=sinBbsine A over a, equals, sine B over bsinus A oor a, is gelyk aan, sinus B oor b
1c2=a2+b22abcosCc squared equals a squared plus b squared minus 2 a b cosine Cc kwadraat is gelyk aan a kwadraat plus b kwadraat minus 2 a b kosinus C
2tanA=abtangent A equals, a over btangens A is gelyk aan, a oor b
3ABA BA B
4aAa Aa A
5bAb Ab A
6BaB aB a
7ABCangle A B Choek A B C
8mABCthe measure of angle A B Cdie hoekmaat hoek A B C
9mAthe measure of angle Adie hoekmaat hoek A

Afrikaans Clearspeak CapitalLetters rule tests. Locale: af, Style: Caps_SayCaps.

0sinAa=sinBbsine cap A over a, equals, sine cap B over bsinus hoofletter A oor a, is gelyk aan, sinus hoofletter B oor b
1c2=a2+b22abcosCc squared equals a squared plus b squared minus 2 a b cosine cap Cc kwadraat is gelyk aan a kwadraat plus b kwadraat minus 2 a b kosinus hoofletter C
2tanA=abtangent cap A equals, a over btangens hoofletter A is gelyk aan, a oor b
3ABcap A, cap Bhoofletter A, hoofletter B
4aAa, cap Aa, hoofletter A
5bAb, cap Ab, hoofletter A
6Bacap B, ahoofletter B, a
7ABCangle cap A, cap B, cap Choek hoofletter A, hoofletter B, hoofletter C
8mABCthe measure of angle cap A, cap B, cap Cdie hoekmaat hoek hoofletter A, hoofletter B, hoofletter C
9mAthe measure of angle cap Adie hoekmaat hoek hoofletter A
10Aangle cap Ahoek hoofletter A

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Verbose.

0fg(x)f of, g of xf van, g van x
1fgx=f(x)+g(x)f of, g of x, equals f of x, plus g of xf van, g van x, is gelyk aan f van x, plus g van x
2sin(x)ysine x ysinus x y
3a2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
4a2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
5a2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
6a=b2 lines, Line 1: a; equals; b2 lyne, Lyn 1: a; is gelyk aan; b
7a=b2 lines, Line 1: a; equals; b. Line 2: blank2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg
8a=b2 lines, Line 1: a; equals; b. Line 2: blank2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg
9a=b122 lines, Line 1: a; equals; b. Line 2: 1; blank; 22 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: 1; leeg; 2
1045°102045 degrees, 10 minutes, 20 seconds45 grade, 10 minute, 20 sekondes
111°10201 degree, 10 minutes, 20 seconds1 graad, 10 minute, 20 sekondes
1245°12045 degrees, 1 minute, 20 seconds45 grade, 1 minuut, 20 sekondes
1345°10145 degrees, 10 minutes, 1 second45 grade, 10 minute, 1 sekonde
141201 foot, 20 inches1 voet, 20 duim
1510110 feet, 1 inch10 voet, 1 duim
1612enclosed with box 12omring deur boks 12
1712crossed out 12doodgetrek 12
1821212 crossed out with 212 oorskryf met 2
1912212 crossed out with 212 oorskryf met 2
2012212 crossed out with 212 oorskryf met 2
2121212 crossed out with 212 oorskryf met 2
22Avertical bar Avertikale lyn A
23AA horizontal barA horisontale lyn
24AA vertical barA vertikale lyn
25AA over horizontal barA oor horisontale lyn
26a3+bthe square root of, the cube root of a, plus bdie vierkantswortel van, die derdemagswortel van a, plus b
27a4+bthe square root of, the fourth root of a, plus bdie vierkantswortel van, die vierde wortel van a, plus b
28a+bthe square root of, the square root of a, plus bdie vierkantswortel van, die vierkantswortel van a, plus b
29xcdableft sub a left super b x right sub c right super dlinker onderskrif a linker boskrif b x regter onderskrif c regter boskrif d
30xcedfagbhleft sub a b left super g h x right sub c d right super e flinker onderskrif a b linker boskrif g h x regter onderskrif c d regter boskrif e f
31xdableft sub a left super b x; right super dlinker onderskrif a linker boskrif b x; regter boskrif d
32xcabrleft sub a left super b x right sub c; rlinker onderskrif a linker boskrif b x regter onderskrif c; r
33lxcdbl; left super b x right sub c right super dl; linker boskrif b x regter onderskrif c regter boskrif d
34xcdaleft sub a; x right sub c right super dlinker onderskrif a; x regter onderskrif c regter boskrif d
35{xA|B}the set of all x not in A such that Bdie versameling van alle x nie in A sodat B
36{B}the set Bdie versameling B
37{}the empty setdie leë versameling
38Q+the positive rational numbersdie positiewe rasionele getalle
39+the positive rational numbersdie positiewe rasionele getalle
40Q-the negative rational numbersdie negatiewe rasionele getalle
41-the negative rational numbersdie negatiewe rasionele getalle
42Q2q-twoq-twee
432q-twoq-twee
44N2n-twon-twee
452n-twon-twee
46

a

aa
47102010 over 2010 oor 20
482kmb2 kilometers over b2 kilometer oor b
491.43¯the repeating decimal 1 point 4 followed by repeating digit 3die herhalende dessimaal 1 punt 4 gevolg deur herhalende syfer 3
503223 raised to the 2 squared power3 verhef tot die 2 kwadraat mag
513i23 raised to the i squared power3 verhef tot die i kwadraat mag
5232323 raised to the two thirds squared power3 verhef tot die twee derdes kwadraat mag
533233 raised to the 2 cubed power3 verhef tot die 2 tot die mag drie mag
543i33 raised to the i cubed power3 verhef tot die i tot die mag drie mag
5532333 raised to the two thirds cubed power3 verhef tot die twee derdes tot die mag drie mag
56ab=ca is less than or equal to b equals ca kleiner of gelyk aan b is gelyk aan c
573sin(2+x)3 raised to the sine of, open paren, 2 plus x, close paren, power3 verhef tot die sinus van, links hakkie, 2 plus x, regs hakkie, mag
58Isum under Isom onder I
59ABA under BA onder B
60detAdeterminant Adeterminant A

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Prime_Angle.

045°102045 degrees, 10 minutes, 20 seconds45 grade, 10 minute, 20 sekondes
11°10201 degree, 10 minutes, 20 seconds1 graad, 10 minute, 20 sekondes
245°12045 degrees, 1 minute, 20 seconds45 grade, 1 minuut, 20 sekondes
345°10145 degrees, 10 minutes, 1 second45 grade, 10 minute, 1 sekonde
41201 minute, 20 seconds1 minuut, 20 sekondes
510110 minutes, 1 second10 minute, 1 sekonde

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Prime_Length.

045°102045 degrees, 10 minutes, 20 seconds45 grade, 10 minute, 20 sekondes
11°10201 degree, 10 minutes, 20 seconds1 graad, 10 minute, 20 sekondes
245°12045 degrees, 1 minute, 20 seconds45 grade, 1 minuut, 20 sekondes
345°10145 degrees, 10 minutes, 1 second45 grade, 10 minute, 1 sekonde
41201 foot, 20 inches1 voet, 20 duim
510110 feet, 1 inch10 voet, 1 duim

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Enclosed_EndEnclose.

012enclosed with box 12 end enclosedomring deur boks 12 end omring deur
112crossed out 12 end crossoutdoodgetrek 12 end
2212crossed out 12 with 2 end crossoutoorskryf 12 met 2 end oorskryf
3122crossed out 12 with 2 end crossoutoorskryf 12 met 2 end oorskryf
4122crossed out 12 with 2 end crossoutoorskryf 12 met 2 end oorskryf
5212crossed out 12 with 2 end crossoutoorskryf 12 met 2 end oorskryf

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Roots_PosNegSqRoot.

0a+bthe positive square root of, the positive square root of a, plus bdie positiewe vierkantswortel van, die positiewe vierkantswortel van a, plus b

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Roots_PosNegSqRootEnd.

0a+bthe positive square root of, the positive square root of a, plus b, end rootdie positiewe vierkantswortel van, die positiewe vierkantswortel van a, plus b, end wortel
1-a+bthe positive square root of, the negative square root of a, end root, plus b, end rootdie positiewe vierkantswortel van, die negatiewe vierkantswortel van a, end wortel, plus b, end wortel

Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Belongs.

0{xA|B}the set of all x not belonging to A such that Bdie versameling van alle x behoordnie aan A sodat B

Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Element.

0{xA|B}the set of all x not an element of A such that Bdie versameling van alle x nie 'n element van A sodat B

Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Member.

0{xA|B}the set of all x not a member of A such that Bdie versameling van alle x nie 'n element van A sodat B

Afrikaans Clearspeak Coverage tests. Locale: af, Style: MultiLineLabel_Case.

0f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 02 gevalle, Geval 1: f van x, is gelyk aan negatiewe x, if x kleiner as 0. Geval 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

Afrikaans Clearspeak Coverage tests. Locale: af, Style: MultiLineLabel_Constraint.

0f(x)=xif x<0f(x)=xif x02 constraints, Constraint 1: f of x, equals negative x; if x is less than 0. Constraint 2: f of x, equals x, if x is greater than or equal to 02 beperkings, beperking 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. beperking 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

Afrikaans Clearspeak Coverage tests. Locale: af, Style: VerticalLine_SuchThat.

03|63 such that 63 sodat 6

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Matrix_EndVector.

0|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinantdie determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. sluit determinant

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Paren_Speak.

0(f+g)(2+x)open paren, f plus g, close paren, of, open paren, 2 plus x, close parenlinks hakkie, f plus g, regs hakkie, van, links hakkie, 2 plus x, regs hakkie

Afrikaans Clearspeak Coverage tests. Locale: af, Style: Exponent_Ordinal.

0xAx to the Ax tot die A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: Verbose.

0{zA:z}the set of all z in A such that zdie versameling van alle z in A sodat z
1{zA:z}the set of all z in A such that zdie versameling van alle z in A sodat z
2{zA:z}the set of all z not in A such that zdie versameling van alle z nie in A sodat z
3{Az:z}the set of all A contains as member z such that zdie versameling van alle A bevat as lid z sodat z
4{Az:z}the set of all A contains as member z such that zdie versameling van alle A bevat as lid z sodat z
5{Az:z}the set of all A does not contain as member z such that zdie versameling van alle A bevat nie as lid z sodat z
6zAz is a member of Az is 'n element van A
7zAz is a member of Az is 'n element van A
8zAz is not a member of Az is nie 'n element van nie A
9AzA contains as member zA bevat as lid z
10AzA contains as member zA bevat as lid z
11AzA does not contain as member zA bevat nie as lid z
12zAsum over z is a member of Asom oor z is 'n element van A
13zAsum over z is a member of Asom oor z is 'n element van A
14zAsum over z is not a member of Asom oor z is nie 'n element van nie A
15Azsum over A contains as member zsom oor A bevat as lid z
16Azsum over A contains as member zsom oor A bevat as lid z
17Azsum over A does not contain as member zsom oor A bevat nie as lid z

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Auto.

0zAz is a member of Az is 'n element van A
1{zA:z}the set of all z in A such that zdie versameling van alle z in A sodat z
2zAsum over z is a member of Asom oor z is 'n element van A
3zAz is not a member of Az is nie 'n element van nie A
4{zA:z}the set of all z not in A such that zdie versameling van alle z nie in A sodat z
5zAsum over z is not a member of Asom oor z is nie 'n element van nie A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Member.

0zAz is a member of Az is 'n element van A
1{zA:z}the set of all z member of A such that zdie versameling van alle z element van A sodat z
2zAsum over z is a member of Asom oor z is 'n element van A
3zAz is not a member of Az is nie 'n element vanf A
4{zA:z}the set of all z not a member of A such that zdie versameling van alle z nie 'n element van A sodat z
5zAsum over z is not a member of Asom oor z is nie 'n element vanf A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Element.

0zAz is an element of Az is 'n element van A
1{zA:z}the set of all z element of A such that zdie versameling van alle z element van A sodat z
2zAsum over z is an element of Asom oor z is 'n element van A
3zAz is not an element of Az is nie 'n element van A
4{zA:z}the set of all z not an element of A such that zdie versameling van alle z nie 'n element van A sodat z
5zAsum over z is not an element of Asom oor z is nie 'n element van A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_In.

0zAz is in Az is in A
1{zA:z}the set of all z in A such that zdie versameling van alle z in A sodat z
2zAsum over z is in Asom oor z is in A
3zAz is not in Az is nie in A
4{zA:z}the set of all z not in A such that zdie versameling van alle z nie in A sodat z
5zAsum over z is not in Asom oor z is nie in A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Belongs.

0zAz belongs to Az behoord aan A
1{zA:z}the set of all z belonging to A such that zdie versameling van alle z behoord aan A sodat z
2zAsum over z belongs to Asom oor z behoord aan A
3zAz does not belong to Az behoord nie aan A
4{zA:z}the set of all z not belonging to A such that zdie versameling van alle z behoordnie aan A sodat z
5zAsum over z does not belong to Asom oor z behoord nie aan A

Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Belongs:Caps_SayCaps:Fraction_GeneralEndFrac.

0{aA|1a}the set of all a belonging to, cap A such that, the fraction with numerator 1, and denominator a, end fractiondie versameling van alle a behoord aan, hoofletter A sodat, die breuk met teller 1, en noemer a, end breuk

Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_Auto.

0323 squared3 kwadraat
1333 cubed3 tot die mag drie
2353 to the fifth power3 tot die vyfde mag
3313 to the first power3 tot die eerste mag
4b1b to the first powerb tot die eerste mag
535.03 raised to the 5.0 power3 verhef tot die 5,0 mag
6303 to the 0 power3 tot die 0 mag
74114 to the 11th power4 tot die 11. mag
8323 to the negative 2 power3 tot die negatiewe 2 mag
932.03 raised to the negative 2.0 power3 verhef tot die negatiewe 2,0 mag
104x4 to the x-th power4 tot die x-de mag
113y+23 raised to the y plus 2 power3 verhef tot die y plus 2 mag
12(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powerlinks hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag
13p12p sub 1, squaredp onderskrif 1, kwadraat
14p13p sub 1, cubedp onderskrif 1, tot die mag drie
15p14p sub 1, to the fourth powerp onderskrif 1, tot die vierde mag
16p110p sub 1, to the tenth powerp onderskrif 1, tot die tiende mag
17p1x+1p sub 1, raised to the x plus 1 powerp onderskrif 1, verhef tot die x plus 1 mag
18px12p sub, x sub 1, squaredp onderskrif, x onderskrif 1, kwadraat
19px13p sub, x sub 1, cubedp onderskrif, x onderskrif 1, tot die mag drie
20px14p sub, x sub 1, to the fourth powerp onderskrif, x onderskrif 1, tot die vierde mag
21px110p sub, x sub 1, to the tenth powerp onderskrif, x onderskrif 1, tot die tiende mag
22px1y+1p sub, x sub 1, raised to the y plus 1 powerp onderskrif, x onderskrif 1, verhef tot die y plus 1 mag
233223 raised to the 2 squared power3 verhef tot die 2 kwadraat mag
2432x23 raised to the 2 x squared power3 verhef tot die 2 x kwadraat mag
255235 raised to the 2 cubed power5 verhef tot die 2 tot die mag drie mag
2652x35 raised to the 2 x cubed power5 verhef tot die 2 x tot die mag drie mag
27322+13 raised to the exponent, 2 squared plus 1, end exponent3 verhef tot die eksponent, 2 kwadraat plus 1, end eksponent
28322+13 raised to the 2 squared power, plus 13 verhef tot die 2 kwadraat mag, plus 1
292x2+3x32 raised to the exponent, x squared plus 3 x cubed, end exponent2 verhef tot die eksponent, x kwadraat plus 3 x tot die mag drie, end eksponent
303343 raised to the exponent, 3 to the fourth power, end exponent3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent
31334+23 raised to the exponent, 3 to the fourth power, plus 2, end exponent3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent
32334+23 raised to the exponent, 3 to the fourth power, end exponent, plus 23 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2
332x42 raised to the exponent, x to the fourth power, end exponent2 verhef tot die eksponent, x tot die vierde mag, end eksponent
34210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent
3533103 raised to the exponent, 3 to the tenth power, end exponent3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent
363310+13 raised to the exponent, 3 to the tenth power, plus 1, end exponent3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent
373310+13 raised to the exponent, 3 to the tenth power, end exponent, plus 13 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1
383(x+1)23 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, kwadraat, end eksponent
393(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent
423(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 23 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponente verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, kwadraat, end eksponent
442n2 to the n-th power2 tot die n-de mag
452m2 to the m-th power2 tot die m-de mag
462i2 to the i-th power2 tot die i-de mag
472j2 to the j-th power2 tot die j-de mag
482a2 to the a-th power2 tot die a-de mag

Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_Ordinal.

0323 to the second3 tot die tweede
1333 to the third3 tot die derde
2303 to the zero3 tot die nul
3313 to the first3 tot die eerste
4353 to the fifth3 tot die vyfde
543.04 raised to the 3.0 power4 verhef tot die 3,0 mag
64114 to the eleventh4 tot die elfde
7323 to the negative 23 tot die negatiewe 2
832.03 raised to the negative 2.0 power3 verhef tot die negatiewe 2,0 mag
94x4 to the x-th4 tot die x-de
103y+23 raised to the y plus 2 power3 verhef tot die y plus 2 mag
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powerlinks hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag
12p12p sub 1, to the secondp onderskrif 1, tot die tweede
13p13p sub 1, to the thirdp onderskrif 1, tot die derde
14p14p sub 1, to the fourthp onderskrif 1, tot die vierde
15p110p sub 1, to the tenthp onderskrif 1, tot die tiende
16p1x+1p sub 1, raised to the x plus 1 powerp onderskrif 1, verhef tot die x plus 1 mag
17px12p sub, x sub 1, to the secondp onderskrif, x onderskrif 1, tot die tweede
18px13p sub, x sub 1, to the thirdp onderskrif, x onderskrif 1, tot die derde
19px14p sub, x sub 1, to the fourthp onderskrif, x onderskrif 1, tot die vierde
20px110p sub, x sub 1, to the tenthp onderskrif, x onderskrif 1, tot die tiende
21px1y+1p sub, x sub 1, raised to the y plus 1 powerp onderskrif, x onderskrif 1, verhef tot die y plus 1 mag
223223 raised to the exponent, 2 to the second, end exponent3 verhef tot die eksponent, 2 tot die tweede, end eksponent
2332x23 raised to the exponent, 2 x to the second, end exponent3 verhef tot die eksponent, 2 x tot die tweede, end eksponent
245235 raised to the exponent, 2 to the third, end exponent5 verhef tot die eksponent, 2 tot die derde, end eksponent
2552x35 raised to the exponent, 2 x to the third, end exponent5 verhef tot die eksponent, 2 x tot die derde, end eksponent
26322+13 raised to the exponent, 2 to the second, plus 1, end exponent3 verhef tot die eksponent, 2 tot die tweede, plus 1, end eksponent
27322+13 raised to the exponent, 2 to the second, end exponent, plus 13 verhef tot die eksponent, 2 tot die tweede, end eksponent, plus 1
282x2+3x32 raised to the exponent, x to the second, plus 3 x to the third, end exponent2 verhef tot die eksponent, x tot die tweede, plus 3 x tot die derde, end eksponent
293343 raised to the exponent, 3 to the fourth, end exponent3 verhef tot die eksponent, 3 tot die vierde, end eksponent
30334+23 raised to the exponent, 3 to the fourth, plus 2, end exponent3 verhef tot die eksponent, 3 tot die vierde, plus 2, end eksponent
31334+23 raised to the exponent, 3 to the fourth, end exponent, plus 23 verhef tot die eksponent, 3 tot die vierde, end eksponent, plus 2
322x42 raised to the exponent, x to the fourth, end exponent2 verhef tot die eksponent, x tot die vierde, end eksponent
33210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent
3433103 raised to the exponent, 3 to the tenth, end exponent3 verhef tot die eksponent, 3 tot die tiende, end eksponent
353310+13 raised to the exponent, 3 to the tenth, plus 1, end exponent3 verhef tot die eksponent, 3 tot die tiende, plus 1, end eksponent
363310+13 raised to the exponent, 3 to the tenth, end exponent, plus 13 verhef tot die eksponent, 3 tot die tiende, end eksponent, plus 1
373(x+1)23 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede, end eksponent
383(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende, end eksponent
393(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, plus 2, end eksponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 23 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, end eksponent, plus 2
42e12x2e raised to the exponent, negative one half x to the second, end exponente verhef tot die eksponent, negatiewe een helfte x tot die tweede, end eksponent
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponente verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede, end eksponent

Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_OrdinalPower.

0323 to the second power3 tot die tweede mag
1333 to the third power3 tot die derde mag
2303 to the zero power3 tot die nul mag
3313 to the first power3 tot die eerste mag
4353 to the fifth power3 tot die vyfde mag
535.03 raised to the 5.0 power3 verhef tot die 5,0 mag
64114 to the eleventh power4 tot die elfde mag
7323 to the negative 2 power3 tot die negatiewe 2 mag
832.03 raised to the negative 2.0 power3 verhef tot die negatiewe 2,0 mag
94x4 to the x-th power4 tot die x-de mag
103y+23 raised to the y plus 2 power3 verhef tot die y plus 2 mag
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 powerlinks hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag
12p12p sub 1, to the second powerp onderskrif 1, tot die tweede mag
13p13p sub 1, to the third powerp onderskrif 1, tot die derde mag
14p14p sub 1, to the fourth powerp onderskrif 1, tot die vierde mag
15p110p sub 1, to the tenth powerp onderskrif 1, tot die tiende mag
16p1x+1p sub 1, raised to the x plus 1 powerp onderskrif 1, verhef tot die x plus 1 mag
17px12p sub, x sub 1, to the second powerp onderskrif, x onderskrif 1, tot die tweede mag
18px13p sub, x sub 1, to the third powerp onderskrif, x onderskrif 1, tot die derde mag
19px14p sub, x sub 1, to the fourth powerp onderskrif, x onderskrif 1, tot die vierde mag
20px110p sub, x sub 1, to the tenth powerp onderskrif, x onderskrif 1, tot die tiende mag
21px1y+1p sub, x sub 1, raised to the y plus 1 powerp onderskrif, x onderskrif 1, verhef tot die y plus 1 mag
223223 raised to the exponent, 2 to the second power, end exponent3 verhef tot die eksponent, 2 tot die tweede mag, end eksponent
2332x23 raised to the exponent, 2 x to the second power, end exponent3 verhef tot die eksponent, 2 x tot die tweede mag, end eksponent
245235 raised to the exponent, 2 to the third power, end exponent5 verhef tot die eksponent, 2 tot die derde mag, end eksponent
2552x35 raised to the exponent, 2 x to the third power, end exponent5 verhef tot die eksponent, 2 x tot die derde mag, end eksponent
26322+13 raised to the exponent, 2 to the second power, plus 1, end exponent3 verhef tot die eksponent, 2 tot die tweede mag, plus 1, end eksponent
27322+13 raised to the exponent, 2 to the second power, end exponent, plus 13 verhef tot die eksponent, 2 tot die tweede mag, end eksponent, plus 1
282x2+3x32 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent2 verhef tot die eksponent, x tot die tweede mag, plus 3 x tot die derde mag, end eksponent
293343 raised to the exponent, 3 to the fourth power, end exponent3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent
30334+23 raised to the exponent, 3 to the fourth power, plus 2, end exponent3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent
31334+23 raised to the exponent, 3 to the fourth power, end exponent, plus 23 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2
322x42 raised to the exponent, x to the fourth power, end exponent2 verhef tot die eksponent, x tot die vierde mag, end eksponent
33210x+32 raised to the exponent, 10 raised to the x plus 3 power, end exponent2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent
3433103 raised to the exponent, 3 to the tenth power, end exponent3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent
353310+13 raised to the exponent, 3 to the tenth power, plus 1, end exponent3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent
363310+13 raised to the exponent, 3 to the tenth power, end exponent, plus 13 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1
373(x+1)23 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede mag, end eksponent
383(x+1)103 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent
393(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent
403(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 23 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2
42e12x2e raised to the exponent, negative one half x to the second power, end exponente verhef tot die eksponent, negatiewe een helfte x tot die tweede mag, end eksponent
43e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponente verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede mag, end eksponent

Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_AfterPower.

0323 raised to the power 23 verhef tot die mag 2
1333 raised to the power 33 verhef tot die mag 3
2313 raised to the power 13 verhef tot die mag 1
3303 raised to the power 03 verhef tot die mag 0
4353 raised to the power 53 verhef tot die mag 5
535.03 raised to the power 5.03 verhef tot die mag 5,0
64114 raised to the power 114 verhef tot die mag 11
7323 raised to the power negative 23 verhef tot die mag negatiewe 2
832.03 raised to the power negative 2.03 verhef tot die mag negatiewe 2,0
94x4 raised to the power x4 verhef tot die mag x
103y+23 raised to the power y plus 23 verhef tot die mag y plus 2
11(2y3)3z+8open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8links hakkie, 2 y, minus 3, regs hakkie, verhef tot die mag 3 z plus 8
12p12p sub 1, raised to the power 2p onderskrif 1, verhef tot die mag 2
13p13p sub 1, raised to the power 3p onderskrif 1, verhef tot die mag 3
14p14p sub 1, raised to the power 4p onderskrif 1, verhef tot die mag 4
15p110p sub 1, raised to the power 10p onderskrif 1, verhef tot die mag 10
16p1x+1p sub 1, raised to the power x plus 1p onderskrif 1, verhef tot die mag x plus 1
17px12p sub, x sub 1, raised to the power 2p onderskrif, x onderskrif 1, verhef tot die mag 2
18px13p sub, x sub 1, raised to the power 3p onderskrif, x onderskrif 1, verhef tot die mag 3
19px14p sub, x sub 1, raised to the power 4p onderskrif, x onderskrif 1, verhef tot die mag 4
20px110p sub, x sub 1, raised to the power 10p onderskrif, x onderskrif 1, verhef tot die mag 10
21px1y+1p sub, x sub 1, raised to the power y plus 1p onderskrif, x onderskrif 1, verhef tot die mag y plus 1
223223 raised to the exponent, 2 raised to the power 2, end exponent3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent
2332x23 raised to the exponent, 2 x raised to the power 2, end exponent3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent
243223 raised to the exponent, 2 raised to the power 2, end exponent3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent
2532x23 raised to the exponent, 2 x raised to the power 2, end exponent3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent
265235 raised to the exponent, 2 raised to the power 3, end exponent5 verhef tot die eksponent, 2 verhef tot die mag 3, end eksponent
2752x35 raised to the exponent, 2 x raised to the power 3, end exponent5 verhef tot die eksponent, 2 x verhef tot die mag 3, end eksponent
28322+13 raised to the exponent, 2 raised to the power 2, plus 1, end exponent3 verhef tot die eksponent, 2 verhef tot die mag 2, plus 1, end eksponent
29322+13 raised to the exponent, 2 raised to the power 2, end exponent, plus 13 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent, plus 1
302x2+3x32 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent2 verhef tot die eksponent, x verhef tot die mag 2, plus 3 x verhef tot die mag 3, end eksponent
313343 raised to the exponent, 3 raised to the power 4, end exponent3 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent
32334+23 raised to the exponent, 3 raised to the power 4, plus 2, end exponent3 verhef tot die eksponent, 3 verhef tot die mag 4, plus 2, end eksponent
33334+23 raised to the exponent, 3 raised to the power 4, end exponent, plus 23 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent, plus 2
342x42 raised to the exponent, x raised to the power 4, end exponent2 verhef tot die eksponent, x verhef tot die mag 4, end eksponent
35210x+32 raised to the exponent, 10 raised to the power x plus 3, end exponent2 verhef tot die eksponent, 10 verhef tot die mag x plus 3, end eksponent
3633103 raised to the exponent, 3 raised to the power 10, end exponent3 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent
373310+13 raised to the exponent, 3 raised to the power 10, plus 1, end exponent3 verhef tot die eksponent, 3 verhef tot die mag 10, plus 1, end eksponent
383310+13 raised to the exponent, 3 raised to the power 10, end exponent, plus 13 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent, plus 1
393(x+1)23 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 2, end eksponent
403(x+1)103 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 10, end eksponent
413(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y plus 2, end eksponent
423(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, plus 2, end eksponent
433(x+1)y+23 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 23 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, end eksponent, plus 2
44e12x2e raised to the exponent, negative one half x raised to the power 2, end exponente verhef tot die eksponent, negatiewe een helfte x verhef tot die mag 2, end eksponent
45e12(xμσ)2e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponente verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, verhef tot die mag 2, end eksponent

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Auto.

012one halfeen helfte
1123212 over 3212 oor 32
2xyx over yx oor y
32x3y2 x over 3 y2 x oor 3 y
4xycdx y over c dx y oor c d
51213one half over one thirdeen helfte oor een derde
6xynegative x over ynegatiewe x oor y
72x3ynegative 2 x over 3 ynegatiewe 2 x oor 3 y
8xycdx y over negative c dx y oor negatiewe c d
91213one half over negative one thirdeen helfte oor negatiewe een derde
102+313the fraction with numerator 2 plus 3, and denominator 13die breuk met teller 2 plus 3, en noemer 13
11x+y2the fraction with numerator x plus y, and denominator 2die breuk met teller x plus y, en noemer 2
12x+yxythe fraction with numerator x plus y, and denominator x minus ydie breuk met teller x plus y, en noemer x minus y
13x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus two thirdsdie breuk met teller x plus y, en noemer x minus y, plus twee derdes
14milesgallonmiles over gallonmiles oor gallon
152miles3gallons2 miles over 3 gallons2 miles oor 3 gallons
162miles3gallons2 miles over 3 gallons2 miles oor 3 gallons
17riserunrise over runrise oor run
18successful outcomestotal outcomessuccessful outcomes over total outcomessuccessful outcomes oor total outcomes
196ways of rolling a 736ways of rolling the pair of dice6 ways of rolling a 7 over 36 ways of rolling the pair of dice6 ways of rolling a 7 oor 36 ways of rolling the pair of dice
201213one half over one thirdeen helfte oor een derde
211213the fraction with numerator 1, and denominator, 2 over one thirddie breuk met teller 1, en noemer, 2 oor een derde
22123one half over 3een helfte oor 3
231231 over two thirds1 oor twee derdes
2411321651the fraction with numerator, 11 over 32, and denominator, 16 over 51die breuk met teller, 11 oor 32, en noemer, 16 oor 51
2511321651the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51die breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51
261+4x2the fraction with numerator 1 plus, 4 over x, and denominator 2die breuk met teller 1 plus, 4 oor x, en noemer 2
2732+4xthe fraction with numerator 3, and denominator 2 plus, 4 over xdie breuk met teller 3, en noemer 2 plus, 4 oor x
28102212the fraction with numerator, 10 over 22, and denominator one halfdie breuk met teller, 10 oor 22, en noemer een helfte
291+23123the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirdsdie breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes
301+x21x2the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2die breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2
31x+1x1+1x+1the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1die breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1
32x+1x4+12x+116the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16die breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16
331+x1+2x1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x
341+x+31+2x+31 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 31 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3
351+11+11+11+11 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 11 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1
361+11+11+11+1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses
37a0+1a1+1a2+1a3+a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dota onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses
38f(x)g(x)f of x, over g of xf van x, oor g van x
39f(x)+g(x)g(x)the fraction with numerator f of x, plus g of x, and denominator g of xdie breuk met teller f van x, plus g van x, en noemer g van x
40f(x+1)g(x)the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of xdie breuk met teller f van, links hakkie, x plus 1, regs hakkie, en noemer g van x
41f(x)2f of x, over 2f van x, oor 2
422f(x)2 over f of x2 oor f van x
432g(x)+g(x+1)the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close parendie breuk met teller 2, en noemer g van x, plus g van, links hakkie, x plus 1, regs hakkie
44sinxcosxsine x over cosine xsinus x oor kosinus x
45sinx+cosxcosxthe fraction with numerator sine x plus cosine x, and denominator cosine xdie breuk met teller sinus x plus kosinus x, en noemer kosinus x
46sin2xcos3xsine 2 x over cosine 3 xsinus 2 x oor kosinus 3 x
47sin(x+y)cos(x+y)the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close parendie breuk met teller, die sinus van, links hakkie, x plus y, regs hakkie, en noemer, die kosinus van, links hakkie, x plus y, regs hakkie
48f(2x)g(3x)f of 2 x, over g of 3 xf van 2 x, oor g van 3 x
49logxlogylog x over log ylogaritme x oor logaritme y
50log2xlog3ylog 2 x over log 3 ylogaritme 2 x oor logaritme 3 y
51log10xlog5ythe log base 10 of, x, over, the log base 5 of, ydie logaritme basis 10 van, x, oor, die logaritme basis 5 van, y
52log102xlog53ythe log base 10 of, 2 x, over, the log base 5 of, 3 ydie logaritme basis 10 van, 2 x, oor, die logaritme basis 5 van, 3 y
53log(x+1)logythe fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log ydie breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer logaritme y
54f1(x)g1(x)f sub 1, of x, over, g sub 1, of xf onderskrif 1, van x, oor, g onderskrif 1, van x

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Over.

0121 over 21 oor 2
1123212 over 3212 oor 32
22+3132 plus 3 over 132 plus 3 oor 13
3x+y2x plus y over 2x plus y oor 2
4x+yxyx plus y over x minus yx plus y oor x minus y
5x+yxy+23x plus y over x minus y, plus, 2 over 3x plus y oor x minus y, plus, 2 oor 3
6milesgallonmiles over gallonmiles oor gallon
72miles3gallons2 miles over 3 gallons2 miles oor 3 gallons

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_OverEndFrac.

0121 over 2, end fraction1 oor 2, end breuk
1123212 over 32, end fraction12 oor 32, end breuk
22+3132 plus 3 over 13, end fraction2 plus 3 oor 13, end breuk
3x+y2x plus y over 2, end fractionx plus y oor 2, end breuk
4x+yxyx plus y over x minus y, end fractionx plus y oor x minus y, end breuk
5x+yxy+23x plus y over x minus y, end fraction, plus, 2 over 3, end fractionx plus y oor x minus y, end breuk, plus, 2 oor 3, end breuk
6milesgallonsmiles over gallons, end fractionmiles oor gallons, end breuk
72miles3gallons2 miles over 3 gallons, end fraction2 miles oor 3 gallons, end breuk

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_GeneralEndFrac.

012the fraction with numerator 1, and denominator 2, end fractiondie breuk met teller 1, en noemer 2, end breuk
11232the fraction with numerator 12, and denominator 32, end fractiondie breuk met teller 12, en noemer 32, end breuk
22+313the fraction with numerator 2 plus 3, and denominator 13, end fractiondie breuk met teller 2 plus 3, en noemer 13, end breuk
3x+y2the fraction with numerator x plus y, and denominator 2, end fractiondie breuk met teller x plus y, en noemer 2, end breuk
4x+yxythe fraction with numerator x plus y, and denominator x minus y, end fractiondie breuk met teller x plus y, en noemer x minus y, end breuk
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, end fraction, plus, the fraction with numerator 2, and denominator 3, end fractiondie breuk met teller x plus y, en noemer x minus y, end breuk, plus, die breuk met teller 2, en noemer 3, end breuk
6milesgallonthe fraction with numerator miles, and denominator gallon, end fractiondie breuk met teller miles, en noemer gallon, end breuk

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_General.

012the fraction with numerator 1, and denominator 2die breuk met teller 1, en noemer 2
11232the fraction with numerator 12, and denominator 32die breuk met teller 12, en noemer 32
22+313the fraction with numerator 2 plus 3, and denominator 13die breuk met teller 2 plus 3, en noemer 13
3x+y2the fraction with numerator x plus y, and denominator 2die breuk met teller x plus y, en noemer 2
4x+yxythe fraction with numerator x plus y, and denominator x minus ydie breuk met teller x plus y, en noemer x minus y
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus, the fraction with numerator 2, and denominator 3die breuk met teller x plus y, en noemer x minus y, plus, die breuk met teller 2, en noemer 3
6milesgallonthe fraction with numerator miles, and denominator gallondie breuk met teller miles, en noemer gallon
72miles3gallonsthe fraction with numerator 2 miles, and denominator 3 gallonsdie breuk met teller 2 miles, en noemer 3 gallons

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_FracOver.

012the fraction 1 over 2die breuk 1 oor 2
11232the fraction 12 over 32die breuk 12 oor 32
22+313the fraction 2 plus 3 over 13die breuk 2 plus 3 oor 13
3x+y2the fraction x plus y over 2die breuk x plus y oor 2
4x+yxythe fraction x plus y over x minus ydie breuk x plus y oor x minus y
5x+yxy+23the fraction x plus y over x minus y, plus, the fraction 2 over 3die breuk x plus y oor x minus y, plus, die breuk 2 oor 3
6milesgallonthe fraction miles over gallondie breuk miles oor gallon
72miles3gallonsthe fraction 2 miles over 3 gallonsdie breuk 2 miles oor 3 gallons

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Per.

0121 per 21 per 2
1123212 per 3212 per 32
22+3132 plus 3 per 132 plus 3 per 13
3x+y2x plus y per 2x plus y per 2
4x+yxyx plus y per x minus yx plus y per x minus y
5x+yxy+23x plus y per x minus y, plus, 2 per 3x plus y per x minus y, plus, 2 per 3
6milesgallonmiles per gallonmiles per gallon
72miles3gallons2 miles per 3 gallons2 miles per 3 gallons

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Ordinal.

012one halfeen helfte
11232twelve thirty secondstwaalf twee-en-dertigstes
22+313the fraction with numerator 2 plus 3, and denominator 13die breuk met teller 2 plus 3, en noemer 13
3x+y2the fraction with numerator x plus y, and denominator 2die breuk met teller x plus y, en noemer 2
4x+yxythe fraction with numerator x plus y, and denominator x minus ydie breuk met teller x plus y, en noemer x minus y
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, plus two thirdsdie breuk met teller x plus y, en noemer x minus y, plus twee derdes
6milesgallonmiles over gallonmiles oor gallon
72miles3gallons2 miles over 3 gallons2 miles oor 3 gallons

Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_EndFrac.

012one halfeen helfte
1123212 over 32, end fraction12 oor 32, end breuk
22+313the fraction with numerator 2 plus 3, and denominator 13, end fractiondie breuk met teller 2 plus 3, en noemer 13, end breuk
3x+y2the fraction with numerator x plus y, and denominator 2, end fractiondie breuk met teller x plus y, en noemer 2, end breuk
4x+yxythe fraction with numerator x plus y, and denominator x minus y, end fractiondie breuk met teller x plus y, en noemer x minus y, end breuk
5x+yxy+23the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirdsdie breuk met teller x plus y, en noemer x minus y, end breuk, plus twee derdes
6milesgallonsmiles over gallonsmiles oor gallons
72miles3gallons2 miles over 3 gallons2 miles oor 3 gallons
81213one half over one thirdeen helfte oor een derde
91213the fraction with numerator 1, and denominator, 2 over one third, end fractiondie breuk met teller 1, en noemer, 2 oor een derde, end breuk
10123one half over 3, end fractioneen helfte oor 3, end breuk
111231 over two thirds, end fraction1 oor twee derdes, end breuk
1211321651the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fractiondie breuk met teller, 11 oor 32, en noemer, 16 oor 51, end breuk
1311321651the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fractiondie breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51, end breuk
141+4x2the fraction with numerator 1 plus, 4 over x, and denominator 2, end fractiondie breuk met teller 1 plus, 4 oor x, en noemer 2, end breuk
1532+4xthe fraction with numerator 3, and denominator 2 plus, 4 over x, end fractiondie breuk met teller 3, en noemer 2 plus, 4 oor x, end breuk
16102212the fraction with numerator, 10 over 22, and denominator one half, end fractiondie breuk met teller, 10 oor 22, en noemer een helfte, end breuk
171+23123the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fractiondie breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes, end breuk
181+x21x2the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fractiondie breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2, end breuk
19x+1x1+1x+1the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fractiondie breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1, end breuk
20x+1x4+12x+116the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fractiondie breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16, end breuk
211+x1+2x1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x, end breuk
221+x+31+2x+31 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction1 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3, end breuk
231+11+11+11+11 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1, end breuk
241+11+11+11+1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses, end breuk
25a0+1a1+1a2+1a3+a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fractiona onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses, end breuk

Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Functions_Auto.

0f(x)f of xf van x
1g(x)g of xg van x
2h(x)h of xh van x
3f(2x)f of 2 xf van 2 x
4g(2x)g of negative 2 xg van negatiewe 2 x
5h(12)h of one halfh van een helfte
6f(x+1)=f(x)+1f of, open paren, x plus 1, close paren, equals f of x, plus 1f van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van x, plus 1
7g(2x+1)g of, open paren, 2 x, plus 1, close pareng van, links hakkie, 2 x, plus 1, regs hakkie
8g(x2)g of, open paren, x squared, close pareng van, links hakkie, x kwadraat, regs hakkie
9f1(x)f inverse of xf inverse van x
10g1(x)g inverse of xg inverse van x
11h1(x)h inverse of xh inverse van x
12f1(2x)f inverse of 2 xf inverse van 2 x
13g1(2x)g inverse of negative 2 xg inverse van negatiewe 2 x
14f1(3x1)f inverse of, open paren, 3 x, minus 1, close parenf inverse van, links hakkie, 3 x, minus 1, regs hakkie
15g1(x2)g inverse of, open paren, x squared, close pareng inverse van, links hakkie, x kwadraat, regs hakkie
16h1(12)h inverse of one halfh inverse van een helfte
17f1(f(x))f inverse of, f of xf inverse van, f van x
18g1(g(x))g inverse of, g of xg inverse van, g van x
19h1(h(x))h inverse of, h of xh inverse van, h van x
20f1(f(2x))f inverse of, f of 2 xf inverse van, f van 2 x
21g1(g(2x))g inverse of, g of negative 2 xg inverse van, g van negatiewe 2 x
22h1(h(12))h inverse of, h of one halfh inverse van, h van een helfte
23f1(f(x+1))=x+1f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1f inverse van, links hakkie, f van, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1
24g1(g(2x+1))g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close pareng inverse van, links hakkie, g van, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie
25g1(g(x2))g inverse of, open paren, g of, open paren, x squared, close paren, close pareng inverse van, links hakkie, g van, links hakkie, x kwadraat, regs hakkie, regs hakkie
26f(f1(x))f of, f inverse of xf van, f inverse van x
27g(g1(x))g of, g inverse of xg van, g inverse van x
28h(h1(x))h of, h inverse of xh van, h inverse van x
29f(f1(2x))f of, f inverse of 2 xf van, f inverse van 2 x
30g(g1(2x))g of, g inverse of negative 2 xg van, g inverse van negatiewe 2 x
31f(f1(3x1))f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close parenf van, links hakkie, f inverse van, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie
32g(g1(x2))g of, g inverse of, open paren, x squared, close pareng van, g inverse van, links hakkie, x kwadraat, regs hakkie
33h(h1(12))h of, h inverse of one halfh van, h inverse van een helfte
34f(g(x))f of, g of xf van, g van x
35f(g(x+1))f of, open paren, g of, open paren, x plus 1, close paren, close parenf van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie
36h(g(x))h of, g of xh van, g van x
37h(g(xx+1))h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close parenh van, links hakkie, g van, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie
38(f+g)(x)=f(x)+g(x)open paren, f plus g, close paren, of x, equals f of x, plus g of xlinks hakkie, f plus g, regs hakkie, van x, is gelyk aan f van x, plus g van x
39(f+g)(x+1)=f(x+1)+g(x+1)open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close parenlinks hakkie, f plus g, regs hakkie, van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van, links hakkie, x plus 1, regs hakkie, plus g van, links hakkie, x plus 1, regs hakkie
40(fg)(x)open paren, f times g, close paren, of xlinks hakkie, f punt g, regs hakkie, van x
41(fg)(2x+5)open paren, f times g, close paren, of, open paren, 2 x, plus 5, close parenlinks hakkie, f punt g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie
42(fg)(x)=f(x)g(x)open paren, f over g, close paren, of x, equals, f of x, over g of xlinks hakkie, f oor g, regs hakkie, van x, is gelyk aan, f van x, oor g van x
43(fg)(2x+5)=f(2x+5)g(2x+5)open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close parenlinks hakkie, f oor g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller f van, links hakkie, 2 x, plus 5, regs hakkie, en noemer g van, links hakkie, 2 x, plus 5, regs hakkie
44(fg)(x)=f(g(x))open paren, f composed with g, close paren, of x, equals f of, g of xlinks hakkie, f ring g, regs hakkie, van x, is gelyk aan f van, g van x
452f(x)2 f of x2 f van x
46cf(x)c f of xc f van x
47f2(x)f squared of xf kwadraat van x
48f2(2x+1)f squared of, open paren, 2 x, plus 1, close parenf kwadraat van, links hakkie, 2 x, plus 1, regs hakkie
49f3(x)f cubed of xf tot die mag drie van x
50f3(2x+1)f cubed of, open paren, 2 x, plus 1, close parenf tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie
51f4(x)the fourth power of, f of xdie vierde mag van, f van x
52f4(2x+1)the fourth power of, f of, open paren, 2 x, plus 1, close parendie vierde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie
53f5(x)the fifth power of, f of xdie vyfde mag van, f van x
54f5(2x+1)the fifth power of, f of, open paren, 2 x, plus 1, close parendie vyfde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie
55fn(x)the n-th power of, f of xdie n-de mag van, f van x
56fn(2x+1)the n-th power of, f of, open paren, 2 x, plus 1, close parendie n-de mag van, f van, links hakkie, 2 x, plus 1, regs hakkie
57g2(x)g squared of xg kwadraat van x
58g2(2x+1)g squared of, open paren, 2 x, plus 1, close pareng kwadraat van, links hakkie, 2 x, plus 1, regs hakkie
59h3(x)h cubed of xh tot die mag drie van x
60h3(2x+1)h cubed of, open paren, 2 x, plus 1, close parenh tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie
61g4(x)the fourth power of, g of xdie vierde mag van, g van x
62g4(2x+1)the fourth power of, g of, open paren, 2 x, plus 1, close parendie vierde mag van, g van, links hakkie, 2 x, plus 1, regs hakkie
63h5(x)the fifth power of, h of xdie vyfde mag van, h van x
64h5(2x+1)the fifth power of, h of, open paren, 2 x, plus 1, close parendie vyfde mag van, h van, links hakkie, 2 x, plus 1, regs hakkie
65gn(x)the n-th power of, g of xdie n-de mag van, g van x
66gn(2x+1)the n-th power of, g of, open paren, 2 x, plus 1, close parendie n-de mag van, g van, links hakkie, 2 x, plus 1, regs hakkie
67f1(x)f sub 1, of xf onderskrif 1, van x
68g2(x3)g sub 2, of, open paren, x cubed, close pareng onderskrif 2, van, links hakkie, x tot die mag drie, regs hakkie
69hn(3x2)h sub n, of, open paren, 3 x, minus 2, close parenh onderskrif n, van, links hakkie, 3 x, minus 2, regs hakkie
70f11(x)f sub 1, inverse of xf onderskrif 1, inverse van x
71g21(2x+1)g sub 2, inverse of, open paren, 2 x, plus 1, close pareng onderskrif 2, inverse van, links hakkie, 2 x, plus 1, regs hakkie
72hn1(x)h sub n, inverse of xh onderskrif n, inverse van x
73g11(g2(x))g sub 1, inverse of, g sub 2, of xg onderskrif 1, inverse van, g onderskrif 2, van x
74f1(g21(x))f sub 1, of, g sub 2, inverse of xf onderskrif 1, van, g onderskrif 2, inverse van x
75f(x,y)f of, open paren, x comma y, close parenf van, links hakkie, x komma y, regs hakkie
76f(x,y,z)f of, open paren, x comma y comma z, close parenf van, links hakkie, x komma y komma z, regs hakkie
77f(x+1,2y)f of, open paren, x plus 1, comma, 2 y, close parenf van, links hakkie, x plus 1, komma, 2 y, regs hakkie
78f(2x,x+1,x2)f of, open paren, 2 x, comma, x plus 1, comma, x squared, close parenf van, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie

Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Fraction_Over.

0h(12)h of, open paren, 1 over 2, close parenh van, links hakkie, 1 oor 2, regs hakkie
1h1(12)h inverse of, open paren, 1 over 2, close parenh inverse van, links hakkie, 1 oor 2, regs hakkie
2h1(h(12))h inverse of, open paren, h of, open paren, 1 over 2, close paren, close parenh inverse van, links hakkie, h van, links hakkie, 1 oor 2, regs hakkie, regs hakkie

Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Fraction_FracOver.

0h(h1(12))h of, h inverse of, open paren, the fraction 1 over 2, close parenh van, h inverse van, links hakkie, die breuk 1 oor 2, regs hakkie

Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Functions_None.

0f(x)f times xf maal x
1g(x)g times xg maal x
2h(x)h times xh maal x
3f(2x)f times 2 xf maal 2 x
4g(2x)g times negative 2 xg maal negatiewe 2 x
5h(12)h times one halfh maal een helfte
6f(x+1)=f(x)+1f times, open paren, x plus 1, close paren, equals, f times x, plus 1f maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal x, plus 1
7g(2x+1)g times, open paren, 2 x, plus 1, close pareng maal, links hakkie, 2 x, plus 1, regs hakkie
8g(x2)g times, open paren, x squared, close pareng maal, links hakkie, x kwadraat, regs hakkie
9f1(x)f to the negative 1 power, times xf tot die negatiewe 1 mag, maal x
10g1(x)g to the negative 1 power, times xg tot die negatiewe 1 mag, maal x
11h1(x)h to the negative 1 power, times xh tot die negatiewe 1 mag, maal x
12f1(2x)f to the negative 1 power, times 2 xf tot die negatiewe 1 mag, maal 2 x
13g1(2x)g to the negative 1 power, times negative 2 xg tot die negatiewe 1 mag, maal negatiewe 2 x
14f1(3x1)f to the negative 1 power, times, open paren, 3 x, minus 1, close parenf tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie
15g1(x2)g to the negative 1 power, times, open paren, x squared, close pareng tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie
16h1(12)h to the negative 1 power, times one halfh tot die negatiewe 1 mag, maal een helfte
17f1(f(x))f to the negative 1 power, times, f times xf tot die negatiewe 1 mag, maal, f maal x
18g1(g(x))g to the negative 1 power, times, g times xg tot die negatiewe 1 mag, maal, g maal x
19h1(h(x))h to the negative 1 power, times, h times xh tot die negatiewe 1 mag, maal, h maal x
20f1(f(2x))f to the negative 1 power, times, f times 2 xf tot die negatiewe 1 mag, maal, f maal 2 x
21g1(g(2x))g to the negative 1 power, times, g times negative 2 xg tot die negatiewe 1 mag, maal, g maal negatiewe 2 x
22h1(h(12))h to the negative 1 power, times, h times one halfh tot die negatiewe 1 mag, maal, h maal een helfte
23f1(f(x+1))=x+1f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1f tot die negatiewe 1 mag, maal, links hakkie, f maal, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1
24g1(g(2x+1))g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close pareng tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie
25g1(g(x2))g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close pareng tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, x kwadraat, regs hakkie, regs hakkie
26f(f1(x))f times, open paren, f to the negative 1 power, times x, close parenf maal, links hakkie, f tot die negatiewe 1 mag, maal x, regs hakkie
27g(g1(x))g times, open paren, g to the negative 1 power, times x, close pareng maal, links hakkie, g tot die negatiewe 1 mag, maal x, regs hakkie
28h(h1(x))h times, open paren, h to the negative 1 power, times x, close parenh maal, links hakkie, h tot die negatiewe 1 mag, maal x, regs hakkie
29f(f1(2x))f times, open paren, f to the negative 1 power, times 2 x, close parenf maal, links hakkie, f tot die negatiewe 1 mag, maal 2 x, regs hakkie
30g(g1(2x))g times, open paren, g to the negative 1 power, times negative 2 x, close pareng maal, links hakkie, g tot die negatiewe 1 mag, maal negatiewe 2 x, regs hakkie
31f(f1(3x1))f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close parenf maal, links hakkie, f tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie
32g(g1(x2))g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close pareng maal, links hakkie, g tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie, regs hakkie
33h(h1(12))h times, open paren, h to the negative 1 power, times one half, close parenh maal, links hakkie, h tot die negatiewe 1 mag, maal een helfte, regs hakkie
34f(g(x))f times, g times xf maal, g maal x
35f(g(x+1))f times, open paren, g times, open paren, x plus 1, close paren, close parenf maal, links hakkie, g maal, links hakkie, x plus 1, regs hakkie, regs hakkie
36h(g(x))h times, g times xh maal, g maal x
37h(g(xx+1))h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close parenh maal, links hakkie, g maal, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie
38(f+g)(x)=f(x)+g(x)open paren, f plus g, close paren, times x, equals, f times x, plus, g times xlinks hakkie, f plus g, regs hakkie, maal x, is gelyk aan, f maal x, plus, g maal x
39(f+g)(x+1)=f(x+1)+g(x+1)open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close parenlinks hakkie, f plus g, regs hakkie, maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal, links hakkie, x plus 1, regs hakkie, plus, g maal, links hakkie, x plus 1, regs hakkie
40(fg)(x)open paren, f times g, close paren, times xlinks hakkie, f punt g, regs hakkie, maal x
41(fg)(2x+5)open paren, f times g, close paren, times, open paren, 2 x, plus 5, close parenlinks hakkie, f punt g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie
42(fg)(x)=f(x)g(x)open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times xlinks hakkie, f oor g, regs hakkie, maal x, is gelyk aan, die breuk met teller, f maal x, en noemer, g maal x
43(fg)(2x+5)=f(2x+5)g(2x+5)open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close parenlinks hakkie, f oor g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller, f maal, links hakkie, 2 x, plus 5, regs hakkie, en noemer, g maal, links hakkie, 2 x, plus 5, regs hakkie
442f(x)2, f times x2, f maal x
45cf(x)c, f times xc, f maal x
46f2(x)f squared times xf kwadraat maal x
47f2(2x+1)f squared times, open paren, 2 x, plus 1, close parenf kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie
48f3(x)f cubed times xf tot die mag drie maal x
49f3(2x+1)f cubed times, open paren, 2 x, plus 1, close parenf tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie
50f4(x)f to the fourth power, times xf tot die vierde mag, maal x
51f4(2x+1)f to the fourth power, times, open paren, 2 x, plus 1, close parenf tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie
52f5(x)f to the fifth power, times xf tot die vyfde mag, maal x
53f5(2x+1)f to the fifth power, times, open paren, 2 x, plus 1, close parenf tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie
54fn(x)f to the n-th power, times xf tot die n-de mag, maal x
55fn(2x+1)f to the n-th power, times, open paren, 2 x, plus 1, close parenf tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie
56g2(x)g squared times xg kwadraat maal x
57g2(2x+1)g squared times, open paren, 2 x, plus 1, close pareng kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie
58h3(x)h cubed times xh tot die mag drie maal x
59h3(2x+1)h cubed times, open paren, 2 x, plus 1, close parenh tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie
60g4(x)g to the fourth power, times xg tot die vierde mag, maal x
61g4(2x+1)g to the fourth power, times, open paren, 2 x, plus 1, close pareng tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie
62h5(x)h to the fifth power, times xh tot die vyfde mag, maal x
63h5(2x+1)h to the fifth power, times, open paren, 2 x, plus 1, close parenh tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie
64gn(x)g to the n-th power, times xg tot die n-de mag, maal x
65gn(2x+1)g to the n-th power, times, open paren, 2 x, plus 1, close pareng tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie
66f1(x)f sub 1, times xf onderskrif 1, maal x
67g2(x3)g sub 2, times, open paren, x cubed, close pareng onderskrif 2, maal, links hakkie, x tot die mag drie, regs hakkie
68hn(3x2)h sub n, times, open paren, 3 x, minus 2, close parenh onderskrif n, maal, links hakkie, 3 x, minus 2, regs hakkie
69f11(x)f sub 1, to the negative 1 power, times xf onderskrif 1, tot die negatiewe 1 mag, maal x
70g21(2x+1)g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close pareng onderskrif 2, tot die negatiewe 1 mag, maal, links hakkie, 2 x, plus 1, regs hakkie
71hn1(x)h sub n, to the negative 1 power, times xh onderskrif n, tot die negatiewe 1 mag, maal x
72g11(g2(x))g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close pareng onderskrif 1, tot die negatiewe 1 mag, maal, links hakkie, g onderskrif 2, maal x, regs hakkie
73f1(g21(x))f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close parenf onderskrif 1, maal, links hakkie, g onderskrif 2, tot die negatiewe 1 mag, maal x, regs hakkie
74f(x,y)f times, open paren, x comma y, close parenf maal, links hakkie, x komma y, regs hakkie
75f(x,y,z)f times, open paren, x comma y comma z, close parenf maal, links hakkie, x komma y komma z, regs hakkie
76f(x+1,2y)f times, open paren, x plus 1, comma, 2 y, close parenf maal, links hakkie, x plus 1, komma, 2 y, regs hakkie
77f(2x,x+1,x2)f times, open paren, 2 x, comma, x plus 1, comma, x squared, close parenf maal, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto.

02(3)2 times 32 maal 3
12[3]2 times 32 maal 3
224(3)2 to the fourth power, times 32 tot die vierde mag, maal 3
32(3+4)2 times, open paren, 3 plus 4, close paren2 maal, links hakkie, 3 plus 4, regs hakkie
42[3+4]2 times, open bracket, 3 plus 4, close bracket2 maal, links blokhakkie, 3 plus 4, regs blokhakkie
5(3)(2)3 times 23 maal 2
62(3+4)22 times, open paren, 3 plus 4, close paren, squared2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat
7(2+7)(36)open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close parenlinks hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie
8[2+7][36]open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracketlinks blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie
9x(y+z)x times, open paren, y plus z, close parenx maal, links hakkie, y plus z, regs hakkie
102(y+1)2 times, open paren, y plus 1, close paren2 maal, links hakkie, y plus 1, regs hakkie
11(21)xopen paren, 2 minus 1, close paren, times xlinks hakkie, 2 minus 1, regs hakkie, maal x
12p1(3+7)p sub 1, times, open paren, 3 plus 7, close parenp onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie
13p1a1p2a2p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, powerp onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 powerlinks hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag
1524(x+y)2 raised to the 4 times, open paren, x plus y, close paren, power2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag
16xyx yx y
17x2y3x squared, y cubedx kwadraat, y tot die mag drie
18xy+1xy+2x raised to the y plus 1 power, x raised to the y plus 2 powerx verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag
19ab=abthe square root of a, the square root of b, equals the square root of a bdie vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b
20310=30the square root of 3, the square root of 10, equals the square root of 30die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30
21232 the square root of 32 die vierkantswortel van 3
221+231 plus 2 the square root of 31 plus 2 die vierkantswortel van 3
23f(x)=x2(x+1)f of x, equals x squared times, open paren, x plus 1, close parenf van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie
24sinxcosy+cosxsinysine x cosine y, plus, cosine x sine ysinus x kosinus y, plus, kosinus x sinus y
25sin(x+y)cos(x+y)the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close parendie sinus van, links hakkie, x plus y, regs hakkie, die kosinus van, links hakkie, x plus y, regs hakkie
26log10xythe log base 10 of, x ydie logaritme basis 10 van, x y
27log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ydie logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y
28(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1
292(3((4+5)+6))2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie
302[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie
312|x|2 times, the absolute value of x2 maal, die absolute waarde van x
32|x||y|the absolute value of x, times, the absolute value of ydie absolute waarde van x, maal, die absolute waarde van y
33|x+1||y1|the absolute value of x plus 1, times, the absolute value of y minus 1die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1
34|x+1||y|1the absolute value of x plus 1, times, the absolute value of y, minus 1die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1
35A=h(b1+b22)A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close parenA is gelyk aan h van, links hakkie, die breuk met teller, b onderskrif 1, plus, b onderskrif 2, en noemer 2, regs hakkie
36a(0)=0(a)=0a of 0, equals 0 times a equals 0a van 0, is gelyk aan 0 maal a is gelyk aan 0
37a(1)=aa of negative 1, equals negative aa van negatiewe 1, is gelyk aan negatiewe a
38B(2,6)B of, open paren, 2 comma 6, close parenB van, links hakkie, 2 komma 6, regs hakkie
39p(w)p of wp van w
40x(t)=2t+4x of t, equals 2 t, plus 4x van t, is gelyk aan 2 t, plus 4
41k(x)=(x+3)(x5)k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close parenk van x, is gelyk aan, links hakkie, x plus 3, regs hakkie, maal, links hakkie, x minus 5, regs hakkie
42T(t)=Ts+(T0Ts)ektT of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, powerT van t, is gelyk aan, T onderskrif s, plus, links hakkie, T onderskrif 0, minus, T onderskrif s, regs hakkie, maal e verhef tot die negatiewe k t, mag
43V=lw(8)V equals script l, w of 8V is gelyk aan skrif l, w van 8

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:Functions_None.

0f(x)=x2(x+1)f times x, equals x squared times, open paren, x plus 1, close parenf maal x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie
1A=h(b1+b22)A equals, h times, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close parenA is gelyk aan, h maal, links hakkie, die breuk met teller, b onderskrif 1, plus, b onderskrif 2, en noemer 2, regs hakkie
2a(0)=0(a)=0a times 0, equals 0 times a equals 0a maal 0, is gelyk aan 0 maal a is gelyk aan 0
3a(1)=aa times negative 1, equals negative aa maal negatiewe 1, is gelyk aan negatiewe a
4B(2,6)B times, open paren, 2 comma 6, close parenB maal, links hakkie, 2 komma 6, regs hakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:Paren_SpeakNestingLevel.

02(3((4+5)+6))2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2 maal, links hakkie, 3 maal, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie
12[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2 maal, links blokhakkie, 3 maal, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:AbsoluteValue_AbsEnd.

0|x+1||y1|the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute valuedie absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y minus 1, end absolute waarde van
1|x+1||y|1the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y, end absolute waarde van, minus 1

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes.

02(3)2 times 32 maal 3
12[3]2 times 32 maal 3
224(3)2 to the fourth power, times 32 tot die vierde mag, maal 3
32(3+4)2 times, open paren, 3 plus 4, close paren2 maal, links hakkie, 3 plus 4, regs hakkie
42[3+4]2 times, open bracket, 3 plus 4, close bracket2 maal, links blokhakkie, 3 plus 4, regs blokhakkie
5(3)(2)3 times 23 maal 2
62(3+4)22 times, open paren, 3 plus 4, close paren, squared2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat
7(2+7)(36)open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close parenlinks hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie
8[2+7][36]open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracketlinks blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie
9x(y+z)x times, open paren, y plus z, close parenx maal, links hakkie, y plus z, regs hakkie
102(y+1)2 times, open paren, y plus 1, close paren2 maal, links hakkie, y plus 1, regs hakkie
11(21)xopen paren, 2 minus 1, close paren, times xlinks hakkie, 2 minus 1, regs hakkie, maal x
12p1(3+7)p sub 1, times, open paren, 3 plus 7, close parenp onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie
13p1a1p2a2p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, powerp onderskrif 1, verhef tot die, a onderskrif 1, mag, maal, p onderskrif 2, verhef tot die, a onderskrif 2, mag
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 powerlinks hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag
1524(x+y)2 raised to the 4 times, open paren, x plus y, close paren, power2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag
16xyx times yx maal y
17x2y3x squared times y cubedx kwadraat maal y tot die mag drie
18xy+1xy+2x raised to the y plus 1 power, times x raised to the y plus 2 powerx verhef tot die y plus 1 mag, maal x verhef tot die y plus 2 mag
19ab=abthe square root of a, times the square root of b, equals the square root of a times bdie vierkantswortel van a, maal die vierkantswortel van b, is gelyk aan die vierkantswortel van a maal b
20310=30the square root of 3, times the square root of 10, equals the square root of 30die vierkantswortel van 3, maal die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30
21232 times the square root of 32 maal die vierkantswortel van 3
221+231 plus 2 times the square root of 31 plus 2 maal die vierkantswortel van 3
23f(x)=x2(x+1)f of x, equals x squared times, open paren, x plus 1, close parenf van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie
24sinxcosy+cosxsinysine x, times cosine y plus cosine x, times sine ysinus x, maal kosinus y plus kosinus x, maal sinus y
25sin(x+y)cos(x+y)the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close parendie sinus van, links hakkie, x plus y, regs hakkie, maal, die kosinus van, links hakkie, x plus y, regs hakkie
26log10xythe log base 10 of, x times ydie logaritme basis 10 van, x maal y
27log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals log x, times log ydie logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan logaritme x, maal logaritme y
28(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1
292(3((4+5)+6))2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie
302[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie
312|x|2 times, the absolute value of x2 maal, die absolute waarde van x
32|x||y|the absolute value of x, times, the absolute value of ydie absolute waarde van x, maal, die absolute waarde van y
33|x+1||y1|the absolute value of x plus 1, times, the absolute value of y minus 1die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1
34|x+1||y|1the absolute value of x plus 1, times, the absolute value of y, minus 1die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimesAnd:Functions_None.

0f(x)=x2(x+1)f times x, equals x squared times, open paren, x plus 1, close parenf maal x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes:Paren_SpeakNestingLevel.

02(3((4+5)+6))2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2 maal, links hakkie, 3 maal, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie
12[3((4+5)+6)]2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2 maal, links blokhakkie, 3 maal, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes:AbsoluteValue_AbsEnd.

0|x+1||y1|the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute valuedie absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y minus 1, end absolute waarde van
1|x+1||y|1the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y, end absolute waarde van, minus 1

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None.

02(3)2, open paren, 3, close paren2, links hakkie, 3, regs hakkie
12[3]2, open bracket, 3, close bracket2, links blokhakkie, 3, regs blokhakkie
224(3)2 to the fourth power, open paren, 3, close paren2 tot die vierde mag, links hakkie, 3, regs hakkie
32(3+4)2, open paren, 3 plus 4, close paren2, links hakkie, 3 plus 4, regs hakkie
42[3+4]2, open bracket, 3 plus 4, close bracket2, links blokhakkie, 3 plus 4, regs blokhakkie
5(3)(2)open paren, 3, close paren, open paren, 2, close parenlinks hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie
62(3+4)22, open paren, 3 plus 4, close paren, squared2, links hakkie, 3 plus 4, regs hakkie, kwadraat
7(2+7)(36)open paren, 2 plus 7, close paren, open paren, 3 minus 6, close parenlinks hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie
8[2+7][36]open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracketlinks blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie
9x(y+z)x, open paren, y plus z, close parenx, links hakkie, y plus z, regs hakkie
102(y+1)2, open paren, y plus 1, close paren2, links hakkie, y plus 1, regs hakkie
11(21)xopen paren, 2 minus 1, close paren, xlinks hakkie, 2 minus 1, regs hakkie, x
12p1(3+7)p sub 1, open paren, 3 plus 7, close parenp onderskrif 1, links hakkie, 3 plus 7, regs hakkie
13p1a1p2a2p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, powerp onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag
14(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 powerlinks hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag
1524(x+y)2 raised to the 4, open paren, x plus y, close paren, power2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag
16xyx yx y
17x2y3x squared y cubedx kwadraat y tot die mag drie
18xy+1xy+2x raised to the y plus 1 power, x raised to the y plus 2 powerx verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag
19ab=abthe square root of a, the square root of b, equals the square root of a bdie vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b
20310=30the square root of 3, the square root of 10, equals the square root of 30die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30
21232 the square root of 32 die vierkantswortel van 3
221+231 plus 2 the square root of 31 plus 2 die vierkantswortel van 3
23sinxcosy+cosxsinysine x cosine y, plus, cosine x sine ysinus x kosinus y, plus, kosinus x sinus y
24log10xythe log base 10 of, x ydie logaritme basis 10 van, x y
25log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ydie logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y
26(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1
272(3((4+5)+6))2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie
282[3((4+5)+6)]2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie
292|x|2, the absolute value of x2, die absolute waarde van x
30|x||y|the absolute value of x, the absolute value of ydie absolute waarde van x, die absolute waarde van y
31|x+1||y1|the absolute value of x plus 1, the absolute value of y minus 1die absolute waarde van x plus 1, die absolute waarde van y minus 1
32|x+1||y|1the absolute value of x plus 1, the absolute value of y, minus 1die absolute waarde van x plus 1, die absolute waarde van y, minus 1
33f(x)=x2(x+1)f of x, equals x squared, open paren, x plus 1, close parenf van x, is gelyk aan x kwadraat, links hakkie, x plus 1, regs hakkie
34log(x+y)=logxlogythe log of, open paren, x plus y, close paren, equals, log x log ydie logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Functions_Auto.

0f(x)=x2(x+1)f of x, equals x squared, open paren, x plus 1, close parenf van x, is gelyk aan x kwadraat, links hakkie, x plus 1, regs hakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Paren_SpeakNestingLevel.

02(3((4+5)+6))2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2, links hakkie, 3, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie
12[3((4+5)+6)]2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2, links blokhakkie, 3, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie
22(3((4+5)+6))2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren2, links hakkie, 3, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie
32[3((4+5)+6)]2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket2, links blokhakkie, 3, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Paren_Silent.

02(3)2, open paren, 3, close paren2, links hakkie, 3, regs hakkie
12[3]2, open bracket, 3, close bracket2, links blokhakkie, 3, regs blokhakkie
224(3)2 to the fourth power, open paren, 3, close paren2 tot die vierde mag, links hakkie, 3, regs hakkie
32(3+4)2, open paren, 3 plus 4, close paren2, links hakkie, 3 plus 4, regs hakkie
42[3+4]2, open bracket, 3 plus 4, close bracket2, links blokhakkie, 3 plus 4, regs blokhakkie
5(3)(2)open paren, 3, close paren, open paren, 2, close parenlinks hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie
62(3+4)22, open paren, 3 plus 4, close paren, squared2, links hakkie, 3 plus 4, regs hakkie, kwadraat
7(2+7)(36)open paren, 2 plus 7, close paren, open paren, 3 minus 6, close parenlinks hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie
8[2+7][36]open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracketlinks blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie
9x(y+z)x, open paren, y plus z, close parenx, links hakkie, y plus z, regs hakkie
102(y+1)2, open paren, y plus 1, close paren2, links hakkie, y plus 1, regs hakkie
11(21)xopen paren, 2 minus 1, close paren, xlinks hakkie, 2 minus 1, regs hakkie, x
12p1(3+7)p sub 1, open paren, 3 plus 7, close parenp onderskrif 1, links hakkie, 3 plus 7, regs hakkie
13(x+y)4(xy)4open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 powerlinks hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag
1424(x+y)2 raised to the 4, open paren, x plus y, close paren, power2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag
15(1352)(7401)the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1
162(3((4+5)+6))2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie
172[3((4+5)+6)]2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie

Afrikaans Clearspeak Logarithms rule tests. Locale: af, Style: Log_Auto.

0logxlog xlogaritme x
1log10xthe log base 10 of, xdie logaritme basis 10 van, x
2logbax=logba+logbxthe log base b of, a x, equals, the log base b of, a, plus, the log base b of, xdie logaritme basis b van, a x, is gelyk aan, die logaritme basis b van, a, plus, die logaritme basis b van, x
3logbST=logbSlogbTthe log base b of, S over T, equals, the log base b of, S, minus, the log base b of, Tdie logaritme basis b van, S oor T, is gelyk aan, die logaritme basis b van, S, minus, die logaritme basis b van, T
4logb(xk)=klogbxthe log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, xdie logaritme basis b van, links hakkie, x tot die k-de mag, regs hakkie, is gelyk aan k, die logaritme basis b van, x
510log10x=x10 raised to the log base 10 of, x, power, equals x10 verhef tot die logaritme basis 10 van, x, mag, is gelyk aan x
6log1010x=xthe log base 10 of, 10 to the x-th power, equals xdie logaritme basis 10 van, 10 tot die x-de mag, is gelyk aan x
710log105=510 raised to the log base 10 of, 5, power, equals 510 verhef tot die logaritme basis 10 van, 5, mag, is gelyk aan 5
8log10103=3the log base 10 of, 10 cubed, equals 3die logaritme basis 10 van, 10 tot die mag drie, is gelyk aan 3
9logax=logbxlogbathe log base a of, x, equals, the log base b of, x, over, the log base b of, adie logaritme basis a van, x, is gelyk aan, die logaritme basis b van, x, oor, die logaritme basis b van, a
10log1018log103=log318the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18die logaritme basis 10 van, 18, oor, die logaritme basis 10 van, 3, is gelyk aan, die logaritme basis 3 van, 18
11logxlogalog x over log alogaritme x oor logaritme a
12log(x+1)the log of, open paren, x plus 1, close parendie logaritme van, links hakkie, x plus 1, regs hakkie
13log(x+1)2the log of, open paren, x plus 1, close paren, squareddie logaritme van, links hakkie, x plus 1, regs hakkie, kwadraat
14log(xy)log x ylogaritme x y
15log(x+1)log(x+2)the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close parendie breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme van, links hakkie, x plus 2, regs hakkie
16log6(x+1)log6(x+2)the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close parendie breuk met teller, die logaritme basis 6 van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme basis 6 van, links hakkie, x plus 2, regs hakkie
17log40+log60log5the fraction with numerator log 40 plus log 60, and denominator log 5die breuk met teller logaritme 40 plus logaritme 60, en noemer logaritme 5
18log340+log360log35the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5die breuk met teller, die logaritme basis 3 van, 40, plus, die logaritme basis 3 van, 60, en noemer, die logaritme basis 3 van, 5
19log(34129)=4log3+9log12the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12die logaritme van, links hakkie, 3 tot die vierde mag, 12 tot die negende mag, regs hakkie, is gelyk aan 4 logaritme 3, plus 9 logaritme 12
20log(xy)the log of, open paren, x over y, close parendie logaritme van, links hakkie, x oor y, regs hakkie
21log(34810)=4log310log8the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8die logaritme van, links hakkie, die breuk met teller 3 tot die vierde mag, en noemer 8 tot die tiende mag, regs hakkie, is gelyk aan 4 logaritme 3, minus 10 logaritme 8
2210logx10 raised to the log x power10 verhef tot die logaritme x mag
23lnxl n xl n x
24lnxln(x1)=ln(xx1)l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close parenl n x, minus l n van, links hakkie, x minus 1, regs hakkie, is gelyk aan l n van, links hakkie, die breuk met teller x, en noemer x minus 1, regs hakkie
25ln(ex)=xl n of, open paren, e to the x-th power, close paren, equals xl n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x
26elnx=xe raised to the l n x power, equals xe verhef tot die l n x mag, is gelyk aan x
27ln(ex)=xl n of, open paren, e to the x-th power, close paren, equals xl n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x
28eln4=4e raised to the l n 4 power, equals 4e verhef tot die l n 4 mag, is gelyk aan 4
29ln40ln5=log540l n 40, over l n 5, equals, the log base 5 of, 40l n 40, oor l n 5, is gelyk aan, die logaritme basis 5 van, 40
30ln40+ln60ln5the fraction with numerator l n 40, plus l n 60, and denominator l n 5die breuk met teller l n 40, plus l n 60, en noemer l n 5

Afrikaans Clearspeak Logarithms rule tests. Locale: af, Style: Log_LnAsNaturalLog.

0lnxnatural log xnatuurlike logaritme x
1lnxln(x1)=ln(xx1)natural log x, minus, the natural log of, open paren, x minus 1, close paren, equals, the natural log of, open paren, the fraction with numerator x, and denominator x minus 1, close parennatuurlike logaritme x, minus, die natuurlike logaritme van, links hakkie, x minus 1, regs hakkie, is gelyk aan, die natuurlike logaritme van, links hakkie, die breuk met teller x, en noemer x minus 1, regs hakkie
2ln(ex)=xthe natural log of, open paren, e to the x-th power, close paren, equals xdie natuurlike logaritme van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x
3elnx=xe raised to the natural log x power, equals xe verhef tot die natuurlike logaritme x mag, is gelyk aan x
4ln(ex)=xthe natural log of, open paren, e to the x-th power, close paren, equals xdie natuurlike logaritme van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x
5eln4=4e raised to the natural log 4 power, equals 4e verhef tot die natuurlike logaritme 4 mag, is gelyk aan 4
6ln40ln5=log540natural log 40, over natural log 5, equals, the log base 5 of, 40natuurlike logaritme 40, oor natuurlike logaritme 5, is gelyk aan, die logaritme basis 5 van, 40
7ln40+ln60ln5the fraction with numerator natural log 40, plus natural log 60, and denominator natural log 5die breuk met teller natuurlike logaritme 40, plus natuurlike logaritme 60, en noemer natuurlike logaritme 5

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Auto.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
4(123)the 3 by 1 column matrix. 1, 2, 3die 3 by 1 kolom matriks. 1, 2, 3
5[123]the 3 by 1 column matrix. 1, 2, 3die 3 by 1 kolom matriks. 1, 2, 3
6(35)the 1 by 2 row matrix. 3, 5die 1 by 2 ry matriks. 3, 5
7[35]the 1 by 2 row matrix. 3, 5die 1 by 2 ry matriks. 3, 5
8(3)the 1 by 1 matrix with entry 3die 1 by 1 matriks met waarde 3
9(3)the 1 by 1 matrix with entry 3die 1 by 1 matriks met waarde 3
10(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1
11(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2
12(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 xdie 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x
13(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2
14(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
15(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
16(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0
17(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5
18(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
19(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
20(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
21(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
22(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde
23(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2
243(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 63 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
25(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
26(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5
27|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
28det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
29|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
30det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
31|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
32det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
33|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
34det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
35|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
36det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
37|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
38det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
39|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde
40det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_SpeakColNum.

0(2175)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
1[2175]the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
2(314026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
3[314026]the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
4(123)the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3
5[123]the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3
6(35)the 1 by 2 row matrix. Column 1: 3 Column 2: 5die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5
7[35]the 1 by 2 row matrix. Column 1: 3 Column 2: 5die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5
8(1234)the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4
9[1234]the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4
10(1234)the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4
11[1234]the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4
12(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1
13(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2
14(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 xdie 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x
15(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2
16(241352147)the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7
17(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
18(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0
19(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5
20(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
21(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
22(2x175)the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
23(2xy1223)the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsdie 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes
24(12233415)the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifthdie 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde
25(b11b12b21b22)the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2die 2 by 2 matriks. Ry 1: Kolom 1, b onderskrif 1 1; Kolom 2, b onderskrif 1 2. Ry 2: Kolom 1, b onderskrif 2 1; Kolom 2, b onderskrif 2 2
263(2175)(314026)3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 63 maal die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
27(12233415)(31x4026)the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6
28(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5
29|2175|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
30det(2175)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
31|241352147|the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7
32det(241352147)the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7
33|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
34det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0
35|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
36det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x
37|2x175|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
38det(2x175)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5
39|2xy1223|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes
40det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes
41|12233415|the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifthdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde
42det(12233415)the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifthdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_SilentColNum.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
4(123)the 3 by 1 column matrix. 1, 2, 3die 3 by 1 kolom matriks. 1, 2, 3
5[123]the 3 by 1 column matrix. 1, 2, 3die 3 by 1 kolom matriks. 1, 2, 3
6(35)the 1 by 2 row matrix. 3, 5die 1 by 2 ry matriks. 3, 5
7[35]the 1 by 2 row matrix. 3, 5die 1 by 2 ry matriks. 3, 5
8(x+1x1)the 2 by 1 column matrix. x plus 1, x minus 1die 2 by 1 kolom matriks. x plus 1, x minus 1
9(3612)the 4 by 1 column matrix. 3, 6, 1, 2die 4 by 1 kolom matriks. 3, 6, 1, 2
10(x+12x)the 1 by 2 row matrix. x plus 1, 2 xdie 1 by 2 ry matriks. x plus 1, 2 x
11(3612)the 1 by 4 row matrix. 3, 6, 1, 2die 1 by 4 ry matriks. 3, 6, 1, 2
12(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
13(0343210930216290)the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0
14(2105334270)the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0die 2 by 5 matriks. Ry 1: 2, 1, 0, 5, 3 Ry 2: 3, 4, 2, 7, 0
15(13422105)the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5
16(2175+x)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xdie 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x
17(31x4026)the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6
18(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
19(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
20(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde
21(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2
223(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 63 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6
23(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6
24(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0. maal die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5
25|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
26det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5
27|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
28det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7
29|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0
30det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0
31|2175+x|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x
32det(2175+x)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus xdie determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x
33|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
34det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5
35|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
36det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirdsdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes
37|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde
38det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifthdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_EndMatrix.

0(2175)the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixdie 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks
1[2175]the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixdie 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks
2(314026)the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrixdie 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks
3[314026]the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrixdie 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks
4(123)the 3 by 1 column matrix. 1, 2, 3. end matrixdie 3 by 1 kolom matriks. 1, 2, 3. end matriks
5[123]the 3 by 1 column matrix. 1, 2, 3. end matrixdie 3 by 1 kolom matriks. 1, 2, 3. end matriks
6(35)the 1 by 2 row matrix. 3, 5. end matrixdie 1 by 2 ry matriks. 3, 5. end matriks
7[35]the 1 by 2 row matrix. 3, 5. end matrixdie 1 by 2 ry matriks. 3, 5. end matriks
8(x+1x1)the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrixdie 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1. end matriks
9(3612)the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrixdie 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2. end matriks
10(x+12x)the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrixdie 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x. end matriks
11(3612)the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrixdie 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2. end matriks
12(241352147)the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrixdie 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks
13(0343210930216290)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrixdie 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks
14(2105334270)the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrixdie 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0. end matriks
15(13422105)the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrixdie 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks
16(2175+x)the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrixdie 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks
17(31x4026)the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrixdie 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks
18(2x175)the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrixdie 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks
19(2xy1223)the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrixdie 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks
20(12233415)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrixdie 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks
21(b11b12b21b22)the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrixdie 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2. end matriks
223(2175)(314026)3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks
23(12233415)(31x4026)the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrixdie 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks
24(0343210930216290)(13422105)the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrixdie 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks
25|2175|the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinantdie determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. sluit determinant
26det(2175)the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrixdie determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks
27|241352147|the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinantdie determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. sluit determinant
28det(241352147)the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrixdie determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks
29|0343210930216290|the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinantdie determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. sluit determinant
30det(0343210930216290)the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrixdie determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks
31|2175+x|the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinantdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. sluit determinant
32det(2175+x)the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrixdie determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks
33|2x175|the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinantdie determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. sluit determinant
34det(2x175)the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrixdie determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks
35|2xy1223|the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinantdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. sluit determinant
36det(2xy1223)the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrixdie determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks
37|12233415|the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinantdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. sluit determinant
38det(12233415)the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrixdie determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Vector.

0(123)the 3 by 1 column vector. 1, 2, 3die 3 by 1 kolom vektor. 1, 2, 3
1[123]the 3 by 1 column vector. 1, 2, 3die 3 by 1 kolom vektor. 1, 2, 3
2(35)the 1 by 2 row vector. 3, 5die 1 by 2 ry vektor. 3, 5
3[35]the 1 by 2 row vector. 3, 5die 1 by 2 ry vektor. 3, 5
4(x+1x1)the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1die 2 by 1 kolom vektor. Ry 1: x plus 1 Ry 2: x minus 1
5(3612)the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2die 4 by 1 kolom vektor. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2
6(x+12x)the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 xdie 1 by 2 ry vektor. Kolom 1: x plus 1 Kolom 2: 2 x
7(32)(0594)the 1 by 2 row vector. 3, 2. times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4die 1 by 2 ry vektor. 3, 2. maal die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4
8(127)(354806142)the 1 by 3 row vector. 1, 2, 7. times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2die 1 by 3 ry vektor. 1, 2, 7. maal die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2
9(0594)(32)the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. times the 2 by 1 column vector. 3, 2die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. maal die 2 by 1 kolom vektor. 3, 2
10(354806142)(127)the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. times the 3 by 1 column vector. 1, 2, 7die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. maal die 3 by 1 kolom vektor. 1, 2, 7

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_EndVector.

0(123)the 3 by 1 column vector. 1, 2, 3. end vectordie 3 by 1 kolom vektor. 1, 2, 3. end vektor
1[123]the 3 by 1 column vector. 1, 2, 3. end vectordie 3 by 1 kolom vektor. 1, 2, 3. end vektor
2(35)the 1 by 2 row vector. 3, 5. end vectordie 1 by 2 ry vektor. 3, 5. end vektor
3[35]the 1 by 2 row vector. 3, 5. end vectordie 1 by 2 ry vektor. 3, 5. end vektor
4(x+1x1)the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1. end vectordie 2 by 1 kolom vektor. Ry 1: x plus 1 Ry 2: x minus 1. end vektor
5(3612)the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vectordie 4 by 1 kolom vektor. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2. end vektor
6(x+12x)the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x. end vectordie 1 by 2 ry vektor. Kolom 1: x plus 1 Kolom 2: 2 x. end vektor
7(32)(0594)the 1 by 2 row vector. 3, 2. end vector times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrixdie 1 by 2 ry vektor. 3, 2. end vektor maal die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. end matriks
8(127)(354806142)the 1 by 3 row vector. 1, 2, 7. end vector times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrixdie 1 by 3 ry vektor. 1, 2, 7. end vektor maal die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. end matriks
9(0594)(32)the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix times the 2 by 1 column vector. 3, 2. end vectordie 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. end matriks maal die 2 by 1 kolom vektor. 3, 2. end vektor
10(354806142)(127)the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix times the 3 by 1 column vector. 1, 2, 7. end vectordie 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. end matriks maal die 3 by 1 kolom vektor. 1, 2, 7. end vektor

Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Combinatoric.

0(nr)n choose rn kies r
1(107)10 choose 710 kies 7
2(150)15 choose 015 kies 0
3(83)8 choose 38 kies 3

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17
1x+y=72x+3y=172 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 172 lyne, Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17
2x+y=72x+3y=172 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 172 lyne, Lyn 1: x; plus; y; is gelyk aan; 7. Lyn 2: 2 x; plus; 3 y; is gelyk aan; 17
3Equation 1: x+y=7Equation 2: 2x+3y=172 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 172 lyne, Lyn 1: Equation 1 dubbelpunt x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt 2 x, plus 3 y, is gelyk aan 17
4Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 172 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y, is gelyk aan 17
5Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 172 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y; is gelyk aan; 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y; is gelyk aan; 17
64x+3y+2z=172x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 13 lyne, Lyn 1: 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: 3 x, plus 2 y, plus 5 z, is gelyk aan 1
74x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 13 lyne, Lyn 1: 4 x; plus; 3 y; plus; 2 z; is gelyk aan; 1. Lyn 2: 2 x; plus; 4 y; plus; 6 z; is gelyk aan; 6. Lyn 3: 3 x; plus; 2 y; plus; 5 z; is gelyk aan; 1
8Equation 1: 4x+3y+2z=17Equation 2: 2x+4y+6z=6Equation 3: 3x+2y+5z=13 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 13 lyne, Lyn 1: Equation 1 dubbelpunt 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: Equation 2 dubbelpunt 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: Equation 3 dubbelpunt 3 x, plus 2 y, plus 5 z, is gelyk aan 1
9x0y03x5y303 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 303 lyne, Lyn 1: x groter of gelyk aan 0. Lyn 2: y groter of gelyk aan 0. Lyn 3: 3 x, minus 5 y, kleiner of gelyk aan 30
103x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x4 lyne, Lyn 1: 3 x, plus 8 is gelyk aan 5 x. Lyn 2: 8 is gelyk aan 5 x, minus 3 x. Lyn 3: 8 is gelyk aan 2 x. Lyn 4: 4 is gelyk aan x
113x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank4 lyne, Lyn 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Lyn 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Lyn 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Lyn 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg
12Step 1: 3x+8=5xStep 2: 8=5x3xStep 3: 8=2xStep 4: 4=x4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x4 lyne, Lyn 1: Step 1 dubbelpunt 3 x, plus 8 is gelyk aan 5 x. Lyn 2: Step 2 dubbelpunt 8 is gelyk aan 5 x, minus 3 x. Lyn 3: Step 3 dubbelpunt 8 is gelyk aan 2 x. Lyn 4: Step 4 dubbelpunt 4 is gelyk aan x
13f(x)={x if x<0x  if x0f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0
14f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Case.

0f(x)={x if x<0x  if x0f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0
1f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0
2f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 02 gevalle, Geval 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. Geval 2: f van x, is gelyk aan x; if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Equation.

0x+y=72x+3y=172 equations, Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 172 vergelykings, Vergelyking 1: x plus y is gelyk aan 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan 17
1x+y=72x+3y=172 equations, Equation 1: x plus y; equals; 7. Equation 2: 2 x, plus 3 y; equals; 172 vergelykings, Vergelyking 1: x plus y; is gelyk aan; 7. Vergelyking 2: 2 x, plus 3 y; is gelyk aan; 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLinePausesBetweenColumns_Auto:MultiLineOverview_Auto:MultiLineLabel_Line.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Line.

0x+y=72x+3y=172 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 172 lyne, Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Row.

0x+y=72x+3y=172 rows, Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 172 rye, Ry 1: x plus y is gelyk aan 7. Ry 2: 2 x, plus 3 y, is gelyk aan 17
1x+y=72x+3y=172 rows, Row 1: x plus y; equals; 7. Row 2: 2 x, plus 3 y; equals; 172 rye, Ry 1: x plus y; is gelyk aan; 7. Ry 2: 2 x, plus 3 y; is gelyk aan; 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Step.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x4 stappe, Stap 1: 3 x, plus 8 is gelyk aan 5 x. Stap 2: 8 is gelyk aan 5 x, minus 3 x. Stap 3: 8 is gelyk aan 2 x. Stap 4: 4 is gelyk aan x
13x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank4 stappe, Stap 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Stap 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Stap 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Stap 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Constraint.

0x0y03x5y303 constraints, Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 303 beperkings, beperking 1: x groter of gelyk aan 0. beperking 2: y groter of gelyk aan 0. beperking 3: 3 x, minus 5 y, kleiner of gelyk aan 30

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_None.

0x0y03x5y303 lines, x is greater than or equal to 0. y is greater than or equal to 0. 3 x, minus 5 y, is less than or equal to 303 lyne, x groter of gelyk aan 0. y groter of gelyk aan 0. 3 x, minus 5 y, kleiner of gelyk aan 30
13x+8=5x8=5x3x8=2x4=x4 lines, 3 x; plus; 8; equals; 5 x; blank; blank. blank; blank; 8; equals; 5 x; minus; 3 x. blank; blank; 8; equals; 2 x; blank; blank. blank; blank; 4; equals; x; blank; blank4 lyne, 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. leeg; leeg; 4; is gelyk aan; x; leeg; leeg
2f(x)={x if x<0x  if x0f of x, equals, 2 cases, negative x if x is less than 0. x if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, negatiewe x if x kleiner as 0. x if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 172 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17
1x+y=72x+3y=172 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 172 lyne, Lyn 1: x plus y. is gelyk aan. 7. Lyn 2: 2 x, plus 3 y. is gelyk aan. 17
2x+y=72x+3y=172 lines, Line 1: x. plus. y. equals. 7. Line 2: 2 x. plus. 3 y. equals. 172 lyne, Lyn 1: x. plus. y. is gelyk aan. 7. Lyn 2: 2 x. plus. 3 y. is gelyk aan. 17
3Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon. x plus y equals 7. Line 2: Equation 2 colon. 2 x, plus 3 y, equals 172 lyne, Lyn 1: Equation 1 dubbelpunt. x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt. 2 x, plus 3 y, is gelyk aan 17
4Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon. x plus y. equals. 7. Line 2: Equation 2 colon. 2 x, plus 3 y. equals. 172 lyne, Lyn 1: Equation 1 dubbelpunt. x plus y. is gelyk aan. 7. Lyn 2: Equation 2 dubbelpunt. 2 x, plus 3 y. is gelyk aan. 17
54x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x. plus. 3 y. plus. 2 z. equals. 1. Line 2: 2 x. plus. 4 y. plus. 6 z. equals. 6. Line 3: 3 x. plus. 2 y. plus. 5 z. equals. 13 lyne, Lyn 1: 4 x. plus. 3 y. plus. 2 z. is gelyk aan. 1. Lyn 2: 2 x. plus. 4 y. plus. 6 z. is gelyk aan. 6. Lyn 3: 3 x. plus. 2 y. plus. 5 z. is gelyk aan. 1
63x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x. plus. 8. equals. 5 x. blank. blank. Line 2: blank. blank. 8. equals. 5 x. minus. 3 x. Line 3: blank. blank. 8. equals. 2 x. blank. blank. Line 4: blank. blank. 4. equals. x. blank. blank4 lyne, Lyn 1: 3 x. plus. 8. is gelyk aan. 5 x. leeg. leeg. Lyn 2: leeg. leeg. 8. is gelyk aan. 5 x. minus. 3 x. Lyn 3: leeg. leeg. 8. is gelyk aan. 2 x. leeg. leeg. Lyn 4: leeg. leeg. 4. is gelyk aan. x. leeg. leeg
7f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x. if x kleiner as 0. Geval 2: x. if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x. if x kleiner as 0. Geval 2: x. if x groter of gelyk aan 0
1f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x. if x is less than 0. Case 2: f of x, equals x. if x is greater than or equal to 02 gevalle, Geval 1: f van x, is gelyk aan negatiewe x. if x kleiner as 0. Geval 2: f van x, is gelyk aan x. if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 equations, Equation 1: x plus y. equals. 7. Equation 2: 2 x, plus 3 y. equals. 172 vergelykings, Vergelyking 1: x plus y. is gelyk aan. 7. Vergelyking 2: 2 x, plus 3 y. is gelyk aan. 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 172 lyne, Lyn 1: x plus y. is gelyk aan. 7. Lyn 2: 2 x, plus 3 y. is gelyk aan. 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

0x+y=72x+3y=172 rows, Row 1: x plus y. equals. 7. Row 2: 2 x, plus 3 y. equals. 172 rye, Ry 1: x plus y. is gelyk aan. 7. Ry 2: 2 x, plus 3 y. is gelyk aan. 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x. plus. 8. equals. 5 x. blank. blank. Step 2: blank. blank. 8. equals. 5 x. minus. 3 x. Step 3: blank. blank. 8. equals. 2 x. blank. blank. Step 4: blank. blank. 4. equals. x. blank. blank4 stappe, Stap 1: 3 x. plus. 8. is gelyk aan. 5 x. leeg. leeg. Stap 2: leeg. leeg. 8. is gelyk aan. 5 x. minus. 3 x. Stap 3: leeg. leeg. 8. is gelyk aan. 2 x. leeg. leeg. Stap 4: leeg. leeg. 4. is gelyk aan. x. leeg. leeg

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 172 lyne, Lyn 1: x plus y, is gelyk aan, 7. Lyn 2: 2 x, plus 3 y, is gelyk aan, 17
1x+y=72x+3y=172 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 172 lyne, Lyn 1: x, plus, y, is gelyk aan, 7. Lyn 2: 2 x, plus, 3 y, is gelyk aan, 17
2Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 172 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan 17
3Equation 1:x+y=7Equation 2:2x+3y=172 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 172 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y, is gelyk aan, 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan, 17
44x+3y+2z=12x+4y+6z=63x+2y+5z=13 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 13 lyne, Lyn 1: 4 x, plus, 3 y, plus, 2 z, is gelyk aan, 1. Lyn 2: 2 x, plus, 4 y, plus, 6 z, is gelyk aan, 6. Lyn 3: 3 x, plus, 2 y, plus, 5 z, is gelyk aan, 1
53x+8=5x8=5x3x8=2x4=x4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank4 lyne, Lyn 1: 3 x, plus, 8, is gelyk aan, 5 x, leeg, leeg. Lyn 2: leeg, leeg, 8, is gelyk aan, 5 x, minus, 3 x. Lyn 3: leeg, leeg, 8, is gelyk aan, 2 x, leeg, leeg. Lyn 4: leeg, leeg, 4, is gelyk aan, x, leeg, leeg
6f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x, if x kleiner as 0. Geval 2: x, if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0f(x)={xif x<0xif x0f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x, if x kleiner as 0. Geval 2: x, if x groter of gelyk aan 0
1f(x)=xif x<0f(x)=xif x02 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 02 gevalle, Geval 1: f van x, is gelyk aan negatiewe x, if x kleiner as 0. Geval 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 equations, Equation 1: x plus y, equals, 7. Equation 2: 2 x, plus 3 y, equals, 172 vergelykings, Vergelyking 1: x plus y, is gelyk aan, 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan, 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 172 lyne, Lyn 1: x plus y, is gelyk aan, 7. Lyn 2: 2 x, plus 3 y, is gelyk aan, 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

0x+y=72x+3y=172 rows, Row 1: x plus y, equals, 7. Row 2: 2 x, plus 3 y, equals, 172 rye, Ry 1: x plus y, is gelyk aan, 7. Ry 2: 2 x, plus 3 y, is gelyk aan, 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

03x+8=5x8=5x3x8=2x4=x4 steps, Step 1: 3 x, plus, 8, equals, 5 x, blank, blank. Step 2: blank, blank, 8, equals, 5 x, minus, 3 x. Step 3: blank, blank, 8, equals, 2 x, blank, blank. Step 4: blank, blank, 4, equals, x, blank, blank4 stappe, Stap 1: 3 x, plus, 8, is gelyk aan, 5 x, leeg, leeg. Stap 2: leeg, leeg, 8, is gelyk aan, 5 x, minus, 3 x. Stap 3: leeg, leeg, 8, is gelyk aan, 2 x, leeg, leeg. Stap 4: leeg, leeg, 4, is gelyk aan, x, leeg, leeg

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineOverview_None.

0x+y=72x+3y=17Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17
1x+y=72x+3y=17Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17
2x+y=72x+3y=17Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17Lyn 1: x; plus; y; is gelyk aan; 7. Lyn 2: 2 x; plus; 3 y; is gelyk aan; 17
3Equation 1: x+y=7Equation 2: 2x+3y=17Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17Lyn 1: Equation 1 dubbelpunt x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt 2 x, plus 3 y, is gelyk aan 17
4Equation 1:x+y=7Equation 2:2x+3y=17Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17Lyn 1: Equation 1 dubbelpunt; x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y, is gelyk aan 17
5Equation 1:x+y=7Equation 2:2x+3y=17Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17Lyn 1: Equation 1 dubbelpunt; x plus y; is gelyk aan; 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y; is gelyk aan; 17
64x+3y+2z=172x+4y+6z=63x+2y+5z=1Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1Lyn 1: 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: 3 x, plus 2 y, plus 5 z, is gelyk aan 1
74x+3y+2z=12x+4y+6z=63x+2y+5z=1Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1Lyn 1: 4 x; plus; 3 y; plus; 2 z; is gelyk aan; 1. Lyn 2: 2 x; plus; 4 y; plus; 6 z; is gelyk aan; 6. Lyn 3: 3 x; plus; 2 y; plus; 5 z; is gelyk aan; 1
8Equation 1: 4x+3y+2z=17Equation 2: 2x+4y+6z=6Equation 3: 3x+2y+5z=1Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1Lyn 1: Equation 1 dubbelpunt 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: Equation 2 dubbelpunt 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: Equation 3 dubbelpunt 3 x, plus 2 y, plus 5 z, is gelyk aan 1
9Step 1: 3x+8=5xStep 2: 8=5x3xStep 3: 8=2xStep 4: 4=xLine 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals xLyn 1: Step 1 dubbelpunt 3 x, plus 8 is gelyk aan 5 x. Lyn 2: Step 2 dubbelpunt 8 is gelyk aan 5 x, minus 3 x. Lyn 3: Step 3 dubbelpunt 8 is gelyk aan 2 x. Lyn 4: Step 4 dubbelpunt 4 is gelyk aan x
10f(x)={x if x<0x  if x0f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f van x, is gelyk aan, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0
11f(x)={xif x<0xif x0f of x, equals, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0f van x, is gelyk aan, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0f(x)={x if x<0x  if x0f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0f van x, is gelyk aan, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0
1f(x)=xif x<0f(x)=xif x0Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0Geval 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. Geval 2: f van x, is gelyk aan x; if x groter of gelyk aan 0

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17Vergelyking 1: x plus y is gelyk aan 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x+y=72x+3y=17Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17Ry 1: x plus y is gelyk aan 7. Ry 2: 2 x, plus 3 y, is gelyk aan 17

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

03x+8=5x8=5x3x8=2x4=xStep 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals xStap 1: 3 x, plus 8 is gelyk aan 5 x. Stap 2: 8 is gelyk aan 5 x, minus 3 x. Stap 3: 8 is gelyk aan 2 x. Stap 4: 4 is gelyk aan x
13x+8=5x8=5x3x8=2x4=xStep 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blankStap 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Stap 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Stap 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Stap 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg

Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Constraint:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

0x0y03x5y30Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30beperking 1: x groter of gelyk aan 0. beperking 2: y groter of gelyk aan 0. beperking 3: 3 x, minus 5 y, kleiner of gelyk aan 30

Afrikaans Clearspeak NamedSets rule tests. Locale: af, Style: Verbose.

0the real numbersdie riële getalle
1Rthe real numbersdie riële getalle
2the complex numbersdie komplekse getalle
3Cthe complex numbersdie komplekse getalle
4the integersdie heelgetalle
5Zthe integersdie heelgetalle
6the rational numbersdie rasionele getalle
7Qthe rational numbersdie rasionele getalle
8the natural numbersdie natuurlike getalle
9Nthe natural numbersdie natuurlike getalle
100the natural numbers with zerodie natuurlike getalle met nul
11N0the natural numbers with zerodie natuurlike getalle met nul
12+the positive integersdie positiewe heelgetalle
13Z+the positive integersdie positiewe heelgetalle
14-the negative integersdie negatiewe heelgetalle
15Z-the negative integersdie negatiewe heelgetalle
162r-twor-twee
17R2r-twor-twee
183z-threez-drie
19Z3z-threez-drie
20nc-nc-n
21Cnc-nc-n
22r-infinityr-oneindigheid
23Rr-infinityr-oneindigheid

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Auto.

0(25)2525
1(2x)2 x2 x
22+(2)2 plus negative 22 plus negatiewe 2
32(2)2 minus negative 22 minus negatiewe 2
4222 minus negative 22 minus negatiewe 2
52(2)32 minus, open paren, negative 2, close paren, cubed2 minus, links hakkie, negatiewe 2, regs hakkie, tot die mag drie
6(2x)2open paren, 2 x, close paren, squaredlinks hakkie, 2 x, regs hakkie, kwadraat
7(2x)y+1open paren, 2 x, close paren, raised to the y plus 1 powerlinks hakkie, 2 x, regs hakkie, verhef tot die y plus 1 mag
8(2x)negative 2 xnegatiewe 2 x
9(2x)2open paren, negative 2 x, close paren, squaredlinks hakkie, negatiewe 2 x, regs hakkie, kwadraat
10(2x)2negative, open paren, 2 x, close paren, squarednegatiewe, links hakkie, 2 x, regs hakkie, kwadraat
11(12)one halfeen helfte
12(34x)three fourths xdrie kwarte x
13(1122)open paren, 11 over 22, close parenlinks hakkie, 11 oor 22, regs hakkie
14(12)4one half to the fourth powereen helfte tot die vierde mag
15(1115)2open paren, 11 over 15, close paren, squaredlinks hakkie, 11 oor 15, regs hakkie, kwadraat

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Speak.

0(25)open paren, 25, close parenlinks hakkie, 25, regs hakkie
1(2x)open paren, 2 x, close parenlinks hakkie, 2 x, regs hakkie
22+(2)2 plus, open paren, negative 2, close paren2 plus, links hakkie, negatiewe 2, regs hakkie
32(2)2 minus, open paren, negative 2, close paren2 minus, links hakkie, negatiewe 2, regs hakkie
42(2)32 minus, open paren, negative 2, close paren, cubed2 minus, links hakkie, negatiewe 2, regs hakkie, tot die mag drie
5(2x)2open paren, 2 x, close paren, squaredlinks hakkie, 2 x, regs hakkie, kwadraat
6(2x)y+1open paren, 2 x, close paren, raised to the y plus 1 powerlinks hakkie, 2 x, regs hakkie, verhef tot die y plus 1 mag
7(2x)open paren, negative 2 x, close parenlinks hakkie, negatiewe 2 x, regs hakkie
8(2x)2open paren, negative 2 x, close paren, squaredlinks hakkie, negatiewe 2 x, regs hakkie, kwadraat
9(2x)2negative, open paren, 2 x, close paren, squarednegatiewe, links hakkie, 2 x, regs hakkie, kwadraat
10(12)open paren, one half, close parenlinks hakkie, een helfte, regs hakkie
11(34x)open paren, three fourths x, close parenlinks hakkie, drie kwarte x, regs hakkie
12(1122)open paren, 11 over 22, close parenlinks hakkie, 11 oor 22, regs hakkie
13(12)4open paren, one half, close paren, to the fourth powerlinks hakkie, een helfte, regs hakkie, tot die vierde mag
14(1115)2open paren, 11 over 15, close paren, squaredlinks hakkie, 11 oor 15, regs hakkie, kwadraat

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_CoordPoint.

0(1,2)the point with coordinates 1 comma 2die punt met koördinate 1 komma 2
1(x,y)the point with coordinates x comma ydie punt met koördinate x komma y
2(1,2,3)the point with coordinates 1 comma 2 comma 3die punt met koördinate 1 komma 2 komma 3
3(x,y,z)the point with coordinates x comma y comma zdie punt met koördinate x komma y komma z
4(1,2,386)the point with coordinates 1 comma 2 comma 386die punt met koördinate 1 komma 2 komma 386

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Interval.

0(a,b)the interval from a to b, not including a or bdie interval van a tot b, nie insluitend a of b
1(0,1)the interval from 0 to 1, not including 0 or 1die interval van 0 tot 1, nie insluitend 0 of 1
2[a,b)the interval from a to b, including a, but not including bdie interval van a tot b, insluitend a, maar nie insluitend b
3[0,1)the interval from 0 to 1, including 0, but not including 1die interval van 0 tot 1, insluitend 0, maar nie insluitend 1
4(a,b]the interval from a to b, not including a, but including bdie interval van a tot b, nie insluitend a, maar insluitend b
5(0,1]the interval from 0 to 1, not including 0, but including 1die interval van 0 tot 1, nie insluitend 0, maar insluitend 1
6[a,b]the interval from a to b, including a and bdie interval van a tot b, insluitend a en b
7[0,1]the interval from 0 to 1, including 0 and 1die interval van 0 tot 1, insluitend 0 en 1
8(,b)the interval from negative infinity to b, not including bdie interval van negatiewe oneindigheid tot b, nie insluitend b
9(,1)the interval from negative infinity to 1, not including 1die interval van negatiewe oneindigheid tot 1, nie insluitend 1
10(,b]the interval from negative infinity to b, including bdie interval van negatiewe oneindigheid tot b, insluitend b
11(,1]the interval from negative infinity to 1, including 1die interval van negatiewe oneindigheid tot 1, insluitend 1
12(a,)the interval from a to infinity, not including adie interval van a tot oneindigheid, nie insluitend a
13(1,)the interval from 1 to infinity, not including 1die interval van 1 tot oneindigheid, nie insluitend 1
14[a,)the interval from a to infinity, including adie interval van a tot oneindigheid, insluitend a
15[1,)the interval from 1 to infinity, including 1die interval van 1 tot oneindigheid, insluitend 1
16(,)the interval from negative infinity to infinitydie interval van negatiewe oneindigheid tot oneindigheid
17(,+)the interval from negative infinity to positive infinitydie interval van negatiewe oneindigheid tot positief oneindigheid

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_SpeakNestingLevel.

0f(g(x))f of, g of xf van, g van x
1f(g(x+1))f of, open paren, g of, open paren, x plus 1, close paren, close parenf van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie
26[2(3+5)]6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket6 minus, links blokhakkie, 2 minus, links hakkie, 3 plus 5, regs hakkie, regs blokhakkie
36(2(3+5))6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren6 minus, links hakkie, 2 minus, tweede links hakkie, 3 plus 5, tweede regs hakkie, regs hakkie
44[x+3(2x+1)]4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket4 maal, links blokhakkie, x plus 3 maal, links hakkie, 2 x, plus 1, regs hakkie, regs blokhakkie
54(x+3(2x+1))4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren4 maal, links hakkie, x plus 3 maal, tweede links hakkie, 2 x, plus 1, tweede regs hakkie, regs hakkie
61+(2+(3+7)(2+8))1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren1 plus, links hakkie, 2 plus, tweede links hakkie, 3 plus 7, tweede regs hakkie, minus, tweede links hakkie, 2 plus 8, tweede regs hakkie, regs hakkie
71+(2+(3(45)))1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren1 plus, links hakkie, 2 plus, tweede links hakkie, 3 minus, derde links hakkie, 4 minus 5, derde regs hakkie, tweede regs hakkie, regs hakkie
8((2+(3+4)+5)+6+((7+(8+1))+2))open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close parenlinks hakkie, tweede links hakkie, 2 plus, derde links hakkie, 3 plus 4, derde regs hakkie, plus 5, tweede regs hakkie, plus 6 plus, tweede links hakkie, derde links hakkie, 7 plus, vierde links hakkie, 8 plus 1, vierde regs hakkie, derde regs hakkie, plus 2, tweede regs hakkie, regs hakkie

Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Silent.

0(25)2525
1(2x)2 x2 x
22+(2)2 plus, negative 22 plus, negatiewe 2
32(2)2 minus, negative 22 minus, negatiewe 2
42(2)32 minus, negative 2, cubed2 minus, negatiewe 2, tot die mag drie
5(2x)22 x, squared2 x, kwadraat
6(2x)y+12 x, raised to the y plus 1 power2 x, verhef tot die y plus 1 mag
7(2x)negative 2 xnegatiewe 2 x
8(2x)2negative 2 x, squarednegatiewe 2 x, kwadraat
9(2x)2negative, 2 x, squarednegatiewe, 2 x, kwadraat
10(12)one halfeen helfte
11(34x)three fourths xdrie kwarte x
12(1122)11 over 2211 oor 22
13(12)4one half, to the fourth powereen helfte, tot die vierde mag
14(1115)211 over 15, squared11 oor 15, kwadraat

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_Auto.

06×86 times 86 maal 8
1m×nm times nm maal n
23×33 times 33 maal 3

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_By.

06×86 by 86 maal 8
1m×nm by nm maal n
23×33 by 33 maal 3

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_Cross.

0u×vu cross vu maal v

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolDot_Auto.

0686 times 86 punt 8
1mnm times nm punt n
2333 times 33 punt 3

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolDot_Dot.

0686 dot 86 punt 8
1mnm dot nm punt n
2333 dot 33 punt 3

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: TriangleSymbol_Auto.

0ΔABCtriangle A B Cdriehoek A B C
1ΔDEFtriangle D E Fdriehoek D E F

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: TriangleSymbol_Delta.

0ΔxDelta xgroot delta x
1f(x+Δx)f of, open paren, x plus Delta x, close parenf van, links hakkie, x plus groot delta x, regs hakkie

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Ellipses_Auto.

01,2,3,1 comma 2 comma 3 comma dot dot dot1 komma 2 komma 3 komma ellipsis
11,2,3,,201 comma 2 comma 3 comma dot dot dot comma 201 komma 2 komma 3 komma ellipsis komma 20
2,2,1,0,1,2,dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dotellipsis komma, negatiewe 2, komma, negatiewe 1, komma 0 komma 1 komma 2 komma ellipsis

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Ellipses_AndSoOn.

01,2,3,1 comma 2 comma 3 comma and so on1 komma 2 komma 3 komma en so voorts
11,2,3,,201 comma 2 comma 3 comma and so on up to comma 201 komma 2 komma 3 komma en so voorts tot by komma 20
2,2,1,0,1,2,dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dotellipsis komma, negatiewe 2, komma, negatiewe 1, komma 0 komma 1 komma 2 komma ellipsis

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Auto.

03|63 divides 63 gedeel deur 6
1{x|x>0}the set of all x such that x is greater than 0die versameling van alle x sodat x groter as 0
2{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2die versameling van alle x sodat, die absolute waarde van x, groter as 2
3f(x)|x=5f of x, evaluated at x equals 5f van x, geëvalueer by x is gelyk aan 5
4x2+2x|x=2x squared plus 2 x, evaluated at x equals 2x kwadraat plus 2 x, geëvalueer by x is gelyk aan 2
5x2+x|01x squared plus x, evaluated at 1, minus the same expression evaluated at 0x kwadraat plus x, geëvalueer by 1, minus dieselfde uitdrukking geëvalueer by 0

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_SuchThat.

0{x|x>0}the set of all x such that x is greater than 0die versameling van alle x sodat x groter as 0

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Divides.

03|63 divides 63 gedeel deur 6

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Given.

0P(A|B)P of, open paren, A given B, close parenP van, links hakkie, A gegee B, regs hakkie

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Auto.

0If x then 2x is an even number.If x is a member of the integers then 2 x, is an even number periodIf x is 'n element van die heelgetalle then 2 x, is an even number punt
1{x|x>5}the set of all x in the integers such that x is greater than 5die versameling van alle x in die heelgetalle sodat x groter as 5
23+2i3 plus 2 i, is not a member of the real numbers3 plus 2 i, is nie 'n element van nie die riële getalle

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Member.

0If x then 2x is an even number.If x is a member of the integers then 2 x, is an even number periodIf x is 'n element van die heelgetalle then 2 x, is an even number punt
1{x|x>5}the set of all x member of the integers such that x is greater than 5die versameling van alle x element van die heelgetalle sodat x groter as 5
23+2i3 plus 2 i, is not a member of the real numbers3 plus 2 i, is nie 'n element vanf die riële getalle

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Element.

0If x then 2x is an even number.If x is an element of the integers then 2 x, is an even number periodIf x is 'n element van die heelgetalle then 2 x, is an even number punt
1{x|x>5}the set of all x element of the integers such that x is greater than 5die versameling van alle x element van die heelgetalle sodat x groter as 5
23+2i3 plus 2 i, is not an element of the real numbers3 plus 2 i, is nie 'n element van die riële getalle

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Belongs.

0If x then 2x is an even number.If x belongs to the integers then 2 x, is an even number periodIf x behoord aan die heelgetalle then 2 x, is an even number punt
1{x|x>5}the set of all x belonging to the integers such that x is greater than 5die versameling van alle x behoord aan die heelgetalle sodat x groter as 5
23+2i3 plus 2 i, does not belong to the real numbers3 plus 2 i, behoord nie aan die riële getalle
3If x then 2x is an even number.If x belongs to the integers then 2 x, is an even number periodIf x behoord aan die heelgetalle then 2 x, is an even number punt
4{x|x>5}the set of all x belonging to the integers such that x is greater than 5die versameling van alle x behoord aan die heelgetalle sodat x groter as 5
53+2i3 plus 2 i, does not belong to the real numbers3 plus 2 i, behoord nie aan die riële getalle

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Sets_woAll:SetMemberSymbol_Belongs.

0{x:2<x<7}the set of x belonging to the integers such that 2 is less than x is less than 7die versameling van x behoord aan die heelgetalle sodat 2 kleiner as x kleiner as 7

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Sets_woAll:SetMemberSymbol_Member.

0{x|x>5}the set of x member of the integers such that x is greater than 5die versameling van x element van die heelgetalle sodat x groter as 5

Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Verbose.

0n=110nthe sum from n equals 1 to 10 of ndie som vanaf n is gelyk aan 1 tot 10 van n
1n=1nthe sum from n equals 1 to infinity of ndie som vanaf n is gelyk aan 1 tot oneindigheid van n
2i+ithe sum over i is a member of the positive integers, of idie som oor i is 'n element van die positiewe heelgetalle, van i
3Sithe sum over S, of idie som oor S, van i
4aithe sum of, a sub idie som van, a onderskrif i
5i=110ithe product from i equals 1 to 10 of idie produk vanaf i is gelyk aan 1 tot 10 van i
6i+ii+1the product over i is a member of the positive integers, of, the fraction with numerator i, and denominator i plus 1die produk oor i is 'n element van die positiewe heelgetalle, van, die breuk met teller i, en noemer i plus 1
7+ii+1the product over the positive integers, of, the fraction with numerator i, and denominator i plus 1die produk oor die positiewe heelgetalle, van, die breuk met teller i, en noemer i plus 1
8aithe product of, a sub idie produk van, a onderskrif i
9i=110Sithe intersection from i equals 1 to 10 of, S sub idie interseksie vanaf i is gelyk aan 1 tot 10 van, S onderskrif i
10i=110Sithe union from i equals 1 to 10 of, S sub idie eenheid vanaf i is gelyk aan 1 tot 10 van, S onderskrif i
11Sithe intersection of, S sub idie interseksie van, S onderskrif i
12Sithe union of, S sub idie eenheid van, S onderskrif i
13CSithe intersection over C, of, S sub idie interseksie oor C, van, S onderskrif i
14CSithe union over C, of, S sub idie eenheid oor C, van, S onderskrif i
15f(x)dxthe integral of f of x, d xdie integraal van f van x, d x
1601f(x)dxthe integral from 0 to 1 of f of x, d xdie integraal vanaf 0 tot 1 van f van x, d x
17f(x)dxthe integral over the real numbers, of f of x, d xdie integraal oor die riële getalle, van f van x, d x

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Auto.

0ABA prime, B primeA priem, B priem
1ABA double prime, B double primeA dubbelpriem, B dubbelpriem
2ABA triple prime, B triple primeA trippelpriem, B trippelpriem
3f(x)f prime of xf priem van x
4f(x)f double prime of xf dubbelpriem van x
5f(x)f triple prime of xf trippelpriem van x
611 foot1 voet
722 feet2 voet
811 inch1 duim
922 inches2 duim
10161016 feet, 10 inches16 voet, 10 duim
1145°1045 degrees, 10 minutes45 grade, 10 minute
12x°yx degrees, y minutesx grade, y minute
1345°102545 degrees, 10 minutes, 25 seconds45 grade, 10 minute, 25 sekondes
14x°yzx degrees, y minutes, z secondsx grade, y minute, z sekondes

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Angle.

011 minute1 minuut
1xx minutesx minute
222 minutes2 minute
311 second1 sekonde
4xx secondsx sekondes
522 seconds2 sekondes
6161016 minutes, 10 seconds16 minute, 10 sekondes
7xyx minutes, y secondsx minute, y sekondes
845°1045 degrees, 10 minutes45 grade, 10 minute
945°102545 degrees, 10 minutes, 25 seconds45 grade, 10 minute, 25 sekondes
10ABA prime, B primeA priem, B priem
11ABA double prime, B double primeA dubbelpriem, B dubbelpriem
12ABA triple prime, B triple primeA trippelpriem, B trippelpriem
13f(x)f prime of xf priem van x
14f(x)f double prime of xf dubbelpriem van x
15f(x)f triple prime of xf trippelpriem van x

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Length.

011 foot1 voet
1xx feetx voet
222 feet2 voet
311 inch1 duim
4xx inchesx duim
522 inches2 duim
6161016 feet, 10 inches16 voet, 10 duim
7xyx feet, y inchesx voet, y duim
845°1045 degrees, 10 minutes45 grade, 10 minute
945°102545 degrees, 10 minutes, 25 seconds45 grade, 10 minute, 25 sekondes
10ABA prime, B primeA priem, B priem
11ABA double prime, B double primeA dubbelpriem, B dubbelpriem
12ABA triple prime, B triple primeA trippelpriem, B trippelpriem
13f(x)f prime of xf priem van x
14f(x)f double prime of xf dubbelpriem van x
15f(x)f triple prime of xf trippelpriem van x

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: CombinationPermutation_Auto.

0Crnn C rn C r
1Prnn P rn P r
2C31010 C 310 C 3
3P31010 P 310 P 3

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: CombinationPermutation_ChoosePermute.

0Crnn choose rn kombinasie r
1Prnn permute rn permutasie r
2C31010 choose 310 kombinasie 3
3P31010 permute 310 permutasie 3

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Bar_Auto.

0f¯f barf makron
1f¯(x)f bar of xf makron van x
2f1¯f sub 1, barf onderskrif 1, makron
3f1¯(x)f sub 1, bar of xf onderskrif 1, makron van x
4z¯z barz makron
50.3¯the repeating decimal 0 point followed by repeating digit 3die herhalende dessimaal 0 punt gevolg deur herhalende syfer 3
60.12¯the repeating decimal 0 point followed by repeating digits 1 2die herhalende dessimaal 0 punt gevolg deur herhalende syfers 1 2
72.134¯the repeating decimal 2 point followed by repeating digits 1 3 4die herhalende dessimaal 2 punt gevolg deur herhalende syfers 1 3 4
8.13467¯the repeating decimal point 1 3 followed by repeating digits 4 6 7die herhalende dessimaal punt 1 3 gevolg deur herhalende syfers 4 6 7
925.12632¯the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2die herhalende dessimaal 2 5 punt 1 2 gevolg deur herhalende syfers 6 3 2
10zz¯z, z barz, z makron
11CD¯the line segment C Ddie lynsegment C D
12CD¯the line segment C prime D primedie lynsegment C priem D priem
13CD¯the line segment C double prime D double primedie lynsegment C dubbelpriem D dubbelpriem
14CD¯the line segment C triple prime D triple primedie lynsegment C trippelpriem D trippelpriem
15=defis defined to beis gedeffiniëer as
16(fg)(x)=deff(g(x))open paren, f composed with g, close paren, of x, is defined to be, f of, g of xlinks hakkie, f ring g, regs hakkie, van x, is gedeffiniëer as, f van, g van x
17=?equals sign with question mark over itis gelyk aan teken met vraagteken oor hom
18x+2=?4x plus 2 equals sign with question mark over it 4x plus 2 is gelyk aan teken met vraagteken oor hom 4

Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Bar_Conjugate.

0z¯the complex conjugate of zdie komplekse toegevoegde van z
1zz¯z, the complex conjugate of zz, die komplekse toegevoegde van z
232i¯=3+2ithe complex conjugate of 3 minus 2 i, equals 3 plus 2 idie komplekse toegevoegde van 3 minus 2 i, is gelyk aan 3 plus 2 i
30.3¯the repeating decimal 0 point followed by repeating digit 3die herhalende dessimaal 0 punt gevolg deur herhalende syfer 3
40.12¯the repeating decimal 0 point followed by repeating digits 1 2die herhalende dessimaal 0 punt gevolg deur herhalende syfers 1 2
52.134¯the repeating decimal 2 point followed by repeating digits 1 3 4die herhalende dessimaal 2 punt gevolg deur herhalende syfers 1 3 4
6.13467¯the repeating decimal point 1 3 followed by repeating digits 4 6 7die herhalende dessimaal punt 1 3 gevolg deur herhalende syfers 4 6 7
725.12632¯the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2die herhalende dessimaal 2 5 punt 1 2 gevolg deur herhalende syfers 6 3 2

Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_Auto.

02the square root of 2die vierkantswortel van 2
13+23 plus the square root of 23 plus die vierkantswortel van 2
23±23 plus or minus the square root of 23 plus of minus die vierkantswortel van 2
3323 minus or plus the square root of 23 minus of plus die vierkantswortel van 2
42the negative square root of 2the negative square root of 2
5323 minus the square root of 23 minus die vierkantswortel van 2
63+23 plus the negative square root of 23 plus the negative square root of 2
7323 minus the negative square root of 23 minus the negative square root of 2
83+(2)3 plus, open paren, the negative square root of 2, close paren3 plus, links hakkie, the negative square root of 2, regs hakkie
93(2)3 minus, open paren, the negative square root of 2, close paren3 minus, links hakkie, the negative square root of 2, regs hakkie
10x+1the square root of x plus 1die vierkantswortel van x plus 1
11x+1the square root of x, plus 1die vierkantswortel van x, plus 1
12xthe negative square root of xthe negative square root of x
13(x)2open paren, the square root of x, close paren, squaredlinks hakkie, die vierkantswortel van x, regs hakkie, kwadraat
14(x)2negative, open paren, the square root of x, close paren, squarednegatiewe, links hakkie, die vierkantswortel van x, regs hakkie, kwadraat
15x2the square root of x, squareddie vierkantswortel van x, kwadraat
16x2the square root of x squareddie vierkantswortel van x kwadraat
17x2+y2the square root of x squared plus y squareddie vierkantswortel van x kwadraat plus y kwadraat
18x12+x22the square root of, x sub 1, squared plus, x sub 2, squareddie vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat
19(x2x1)2+(y2y1)2the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squareddie vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat
2012the square root of one halfdie vierkantswortel van een helfte
212366the square root of, 23 over 66die vierkantswortel van, 23 oor 66
22x+12x+5the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5die vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 adie breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a
24y3the cube root of ydie derdemagswortel van y
25n4the fourth root of ndie vierde wortel van n
26355the fifth root of 35die vyfde wortel van 35
271469the ninth root of 146die negende wortel van 146
28dnthe n-th root of ddie n-de wortel van d
29243mthe m-th root of 243die m-de wortel van 243
302iithe i-th root of 2 to the i-th powerdie i-de wortel van 2 tot die i-de mag
31125jthe j-th root of 125die j-de wortel van 125
32y3negative the cube root of ynegatiewe die derdemagswortel van y
33n4negative the fourth root of nnegatiewe die vierde wortel van n

Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_PosNegSqRoot.

02the positive square root of 2die positiewe vierkantswortel van 2
13+23 plus the positive square root of 23 plus die positiewe vierkantswortel van 2
23±23 plus or minus the square root of 23 plus of minus die vierkantswortel van 2
3323 minus or plus the square root of 23 minus of plus die vierkantswortel van 2
42the negative square root of 2the negative square root of 2
5323 minus the positive square root of 23 minus die positiewe vierkantswortel van 2
63+23 plus the negative square root of 23 plus the negative square root of 2
7323 minus the negative square root of 23 minus the negative square root of 2
83+(2)3 plus, open paren, the negative square root of 2, close paren3 plus, links hakkie, the negative square root of 2, regs hakkie
93(2)3 minus, open paren, the negative square root of 2, close paren3 minus, links hakkie, the negative square root of 2, regs hakkie
10x+1the positive square root of x plus 1die positiewe vierkantswortel van x plus 1
11x+1the positive square root of x, plus 1die positiewe vierkantswortel van x, plus 1
12xthe negative square root of xthe negative square root of x
13(x)2open paren, the positive square root of x, close paren, squaredlinks hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat
14(x)2open paren, the negative square root of x, close paren, squaredlinks hakkie, the negative square root of x, regs hakkie, kwadraat
15(x)2negative, open paren, the positive square root of x, close paren, squarednegatiewe, links hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat
16x2the positive square root of x, squareddie positiewe vierkantswortel van x, kwadraat
17x2the positive square root of x squareddie positiewe vierkantswortel van x kwadraat
18x2+y2the positive square root of x squared plus y squareddie positiewe vierkantswortel van x kwadraat plus y kwadraat
19x12+x22the positive square root of, x sub 1, squared plus, x sub 2, squareddie positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat
20(x2x1)2+(y2y1)2the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squareddie positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat
2112the positive square root of one halfdie positiewe vierkantswortel van een helfte
222366the positive square root of, 23 over 66die positiewe vierkantswortel van, 23 oor 66
23x+12x+5the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5die positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5
24b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 adie breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a
25y3the cube root of ydie derdemagswortel van y
26n4the fourth root of ndie vierde wortel van n
27355the fifth root of 35die vyfde wortel van 35
281469the ninth root of 146die negende wortel van 146
29dnthe n-th root of ddie n-de wortel van d
30243mthe m-th root of 243die m-de wortel van 243
312iithe i-th root of 2 to the i-th powerdie i-de wortel van 2 tot die i-de mag
32125jthe j-th root of 125die j-de wortel van 125
33y3negative the cube root of ynegatiewe die derdemagswortel van y
34n4negative the fourth root of nnegatiewe die vierde wortel van n

Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_RootEnd.

02the square root of 2, end rootdie vierkantswortel van 2, end wortel
13+23 plus the square root of 2, end root3 plus die vierkantswortel van 2, end wortel
23±23 plus or minus the square root of 2, end root3 plus of minus die vierkantswortel van 2, end wortel
3323 minus or plus the square root of 2, end root3 minus of plus die vierkantswortel van 2, end wortel
42the negative square root of 2, end rootthe negative square root of 2, end wortel
5323 minus the square root of 2, end root3 minus die vierkantswortel van 2, end wortel
63+23 plus the negative square root of 2, end root3 plus the negative square root of 2, end wortel
7323 minus the negative square root of 2, end root3 minus the negative square root of 2, end wortel
83+(2)3 plus, open paren, the negative square root of 2, end root, close paren3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie
93(2)3 minus, open paren, the negative square root of 2, end root, close paren3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie
10x+1the square root of x plus 1, end rootdie vierkantswortel van x plus 1, end wortel
11x+1the square root of x, end root, plus 1die vierkantswortel van x, end wortel, plus 1
12xthe negative square root of x, end rootthe negative square root of x, end wortel
13(x)2open paren, the square root of x, end root, close paren, squaredlinks hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat
14(x)2negative, open paren, the square root of x, end root, close paren, squarednegatiewe, links hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat
15x2the square root of x, end root, squareddie vierkantswortel van x, end wortel, kwadraat
16x2the square root of x squared, end rootdie vierkantswortel van x kwadraat, end wortel
17x2+y2the square root of x squared plus y squared, end rootdie vierkantswortel van x kwadraat plus y kwadraat, end wortel
18x12+x22the square root of, x sub 1, squared plus, x sub 2, squared, end rootdie vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel
19(x2x1)2+(y2y1)2the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end rootdie vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel
2012the square root of one half, end rootdie vierkantswortel van een helfte, end wortel
212366the square root of, 23 over 66, end rootdie vierkantswortel van, 23 oor 66, end wortel
22x+12x+5the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end rootdie vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 adie breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a
24y3the cube root of y, end rootdie derdemagswortel van y, end wortel
25n4the fourth root of n, end rootdie vierde wortel van n, end wortel
26355the fifth root of 35, end rootdie vyfde wortel van 35, end wortel
271469the ninth root of 146, end rootdie negende wortel van 146, end wortel
28dnthe n-th root of d, end rootdie n-de wortel van d, end wortel
29243mthe m-th root of 243, end rootdie m-de wortel van 243, end wortel
302iithe i-th root of 2 to the i-th power, end rootdie i-de wortel van 2 tot die i-de mag, end wortel
31125jthe j-th root of 125, end rootdie j-de wortel van 125, end wortel
32y3negative the cube root of y, end rootnegatiewe die derdemagswortel van y, end wortel
33n4negative the fourth root of n, end rootnegatiewe die vierde wortel van n, end wortel

Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_PosNegSqRootEnd.

02the positive square root of 2, end rootdie positiewe vierkantswortel van 2, end wortel
13+23 plus the positive square root of 2, end root3 plus die positiewe vierkantswortel van 2, end wortel
23±23 plus or minus the square root of 2, end root3 plus of minus die vierkantswortel van 2, end wortel
3323 minus or plus the square root of 2, end root3 minus of plus die vierkantswortel van 2, end wortel
42the negative square root of 2, end rootthe negative square root of 2, end wortel
5323 minus the positive square root of 2, end root3 minus die positiewe vierkantswortel van 2, end wortel
63+23 plus the negative square root of 2, end root3 plus the negative square root of 2, end wortel
7323 minus the negative square root of 2, end root3 minus the negative square root of 2, end wortel
83+(2)3 plus, open paren, the negative square root of 2, end root, close paren3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie
93(2)3 minus, open paren, the negative square root of 2, end root, close paren3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie
10x+1the positive square root of x plus 1, end rootdie positiewe vierkantswortel van x plus 1, end wortel
11x+1the positive square root of x, end root, plus 1die positiewe vierkantswortel van x, end wortel, plus 1
12xthe negative square root of x, end rootthe negative square root of x, end wortel
13(x)2open paren, the positive square root of x, end root, close paren, squaredlinks hakkie, die positiewe vierkantswortel van x, end wortel, regs hakkie, kwadraat
14(x)2open paren, the negative square root of x, end root, close paren, squaredlinks hakkie, the negative square root of x, end wortel, regs hakkie, kwadraat
15x2the positive square root of x, end root, squareddie positiewe vierkantswortel van x, end wortel, kwadraat
16x2the positive square root of x squared, end rootdie positiewe vierkantswortel van x kwadraat, end wortel
17x2+y2the positive square root of x squared plus y squared, end rootdie positiewe vierkantswortel van x kwadraat plus y kwadraat, end wortel
18x12+x22the positive square root of, x sub 1, squared plus, x sub 2, squared, end rootdie positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel
19(x2x1)2+(y2y1)2the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end rootdie positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel
2012the positive square root of one half, end rootdie positiewe vierkantswortel van een helfte, end wortel
212366the positive square root of, 23 over 66, end rootdie positiewe vierkantswortel van, 23 oor 66, end wortel
22x+12x+5the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end rootdie positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel
23b±b24ac2athe fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 adie breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a
24y3the cube root of y, end rootdie derdemagswortel van y, end wortel
25n4the fourth root of n, end rootdie vierde wortel van n, end wortel
26355the fifth root of 35, end rootdie vyfde wortel van 35, end wortel
271469the ninth root of 146, end rootdie negende wortel van 146, end wortel
28dnthe n-th root of d, end rootdie n-de wortel van d, end wortel
29243mthe m-th root of 243, end rootdie m-de wortel van 243, end wortel
302iithe i-th root of 2 to the i-th power, end rootdie i-de wortel van 2 tot die i-de mag, end wortel
31125jthe j-th root of 125, end rootdie j-de wortel van 125, end wortel
32y3negative the cube root of y, end rootnegatiewe die derdemagswortel van y, end wortel
33n4negative the fourth root of n, end rootnegatiewe die vierde wortel van n, end wortel

Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_Auto.

0{x|2<x<7}the set of all x in the integers such that 2 is less than x is less than 7die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7
1{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2die versameling van alle x sodat, die absolute waarde van x, groter as 2
2{x:2<x<7}the set of all x in the integers such that 2 is less than x is less than 7die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7
3{x:x is an even number}the set of all x in the natural numbers such that x is an even numberdie versameling van alle x in die natuurlike getalle sodat x is an even number
4{1,2,3}the set 1 comma 2 comma 3die versameling 1 komma 2 komma 3
5{1,112,1,253}the set 1 comma 112 comma 1 comma 253die versameling 1 komma 112 komma 1 komma 253

Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_woAll.

0{x|2<x<7}the set of x in the integers such that 2 is less than x is less than 7die versameling van x in die heelgetalle sodat 2 kleiner as x kleiner as 7
1{x||x|>2}the set of x such that, the absolute value of x, is greater than 2die versameling van x sodat, die absolute waarde van x, groter as 2
2{x:2<x<7}the set of x in the integers such that 2 is less than x is less than 7die versameling van x in die heelgetalle sodat 2 kleiner as x kleiner as 7
3{1,2,3}the set 1 comma 2 comma 3die versameling 1 komma 2 komma 3
4{1,112,1,253}the set 1 comma 112 comma 1 comma 253die versameling 1 komma 112 komma 1 komma 253

Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_SilentBracket.

0{x|2<x<7}the set of all x in the integers such that 2 is less than x is less than 7die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7
1{x||x|>2}the set of all x such that, the absolute value of x, is greater than 2die versameling van alle x sodat, die absolute waarde van x, groter as 2
2{x:2<x<7}the set of all x in the integers such that 2 is less than x is less than 7die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7
3{x:x is an even number}the set of all x in the natural numbers such that x is an even numberdie versameling van alle x in die natuurlike getalle sodat x is an even number
4{1,2,3}1 comma 2 comma 31 komma 2 komma 3
5{1,112,1,253}1 comma 112 comma 1 comma 2531 komma 112 komma 1 komma 253

Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_Auto.

0sinxsine xsinus x
1cosxcosine xkosinus x
2tanθtangent thetatangens theta
3secθsecant thetasekans theta
4cscxcosecant xkosekans x
5cotxcotangent xkotangens x
6sin2xsine squared xsinus kwadraat x
7cos3xcosine cubed xkosinus tot die mag drie x
8tan2xtangent squared xtangens kwadraat x
9sec3xsecant cubed xsekans tot die mag drie x
10csc2xcosecant squared xkosekans kwadraat x
11cot2xcotangent squared xkotangens kwadraat x
12sin2πsine 2 pisinus 2 pi
13sin(πk+π2)the sine of, open paren, pi k, plus, pi over 2, close parendie sinus van, links hakkie, pi k, plus, pi oor 2, regs hakkie
14cosπ2the cosine of, pi over 2die kosinus van, pi oor 2
15sinπ2the sine of, pi over 2die sinus van, pi oor 2
16sinπ2sine pi over 2sinus pi oor 2
172sinπ2 over sine pi2 oor sinus pi
18sinπ23the fraction with numerator, the sine of, pi over 2, and denominator 3die breuk met teller, die sinus van, pi oor 2, en noemer 3
19tan(π)tangent negative pitangens negatiewe pi
20sin(x+π)the sine of, open paren, x plus pi, close parendie sinus van, links hakkie, x plus pi, regs hakkie
21cos(x+π2)the cosine of, open paren, x plus, pi over 2, close parendie kosinus van, links hakkie, x plus, pi oor 2, regs hakkie
22cos(π2+x)the cosine of, open paren, pi over 2, plus x, close parendie kosinus van, links hakkie, pi oor 2, plus x, regs hakkie
23sin2x+cos2x=1sine squared x, plus, cosine squared x, equals 1sinus kwadraat x, plus, kosinus kwadraat x, is gelyk aan 1
24sin4xthe fourth power of sine xdie vierde mag van sinus x
25cos5xthe fifth power of cosine xdie vyfde mag van kosinus x
26tannxthe n-th power of tangent xdie n-de mag van tangens x
27sinxcosxsine x over cosine xsinus x oor kosinus x
28tan35°tangent 35 degreestangens 35 grade
29tan(DEF)the tangent of, open paren, angle D E F, close parendie tangens van, links hakkie, hoek D E F, regs hakkie
30tan(D)the tangent of, open paren, angle D, close parendie tangens van, links hakkie, hoek D, regs hakkie
31sin(x+y)=sinxcosy+cosxsinythe sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine ydie sinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, sinus x kosinus y, plus, kosinus x sinus y
32cos(x+y)=cosxcosysinxsinythe cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine ydie kosinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, kosinus x kosinus y, minus, sinus x sinus y
33tan(x+y)=tanxtany1tanxtanythe tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent ydie tangens van, links hakkie, x plus y, regs hakkie, is gelyk aan, die breuk met teller tangens x minus tangens y, en noemer 1 minus, tangens x tangens y
34tan(π6+2π3)=tanπ6tan2π31tanπ6tan2π3the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3die tangens van, links hakkie, pi oor 6, plus, 2 pi oor 3, regs hakkie, is gelyk aan, die breuk met teller, die tangens van, pi oor 6, minus, die tangens van, 2 pi oor 3, en noemer 1 minus, die tangens van, pi oor 6, die tangens van, 2 pi oor 3
35tan2x=2tanx1tan2xtangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared xtangens 2 x, is gelyk aan, die breuk met teller 2 tangens x, en noemer 1 minus, tangens kwadraat x
36cos2x=2cos2x1cosine 2 x, equals 2, cosine squared x, minus 1kosinus 2 x, is gelyk aan 2, kosinus kwadraat x, minus 1
37sinx2=±1cosx2the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2die sinus van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 2
38tanx2=±1cosx1+cosxthe tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine xdie tangens van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 1 plus kosinus x
39cosxcosy=2cosx+y2cosxy2cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2kosinus x kosinus y, is gelyk aan 2, die kosinus van, die breuk met teller x plus y, en noemer 2, die kosinus van, die breuk met teller x minus y, en noemer 2
40sin1xthe inverse sine of xdie inverse sinus van x
41cos1xthe inverse cosine of xdie inverse kosinus van x
42tan1xthe inverse tangent of xdie inverse tangens van x
43cot1xthe inverse cotangent of xdie inverse kotangens van x
44sec1xthe inverse secant of xdie inverse sekans van x
45csc1xthe inverse cosecant of xdie inverse kosekans van x
46sin122the inverse sine of, the fraction with numerator the square root of 2, and denominator 2die inverse sinus van, die breuk met teller die vierkantswortel van 2, en noemer 2
47cos112the inverse cosine of one halfdie inverse kosinus van een helfte
48tan117the inverse tangent of 17die inverse tangens van 17
49cot132the inverse cotangent of 32die inverse kotangens van 32
50sec1100the inverse secant of 100die inverse sekans van 100
51csc185the inverse cosecant of 85die inverse kosekans van 85
52sin1(x)the inverse sine of negative xdie inverse sinus van negatiewe x
53cos1(x)the inverse cosine of negative xdie inverse kosinus van negatiewe x
54tan1(x+12)the inverse tangent of, open paren, negative x plus 12, close parendie inverse tangens van, links hakkie, negatiewe x plus 12, regs hakkie
55cot1(x1)the inverse cotangent of, open paren, negative x minus 1, close parendie inverse kotangens van, links hakkie, negatiewe x minus 1, regs hakkie
56sin1(sin0)the inverse sine of sine 0die inverse sinus van sinus 0
57csc1(cscx)the inverse cosecant of cosecant xdie inverse kosekans van kosekans x
58cos(cos1(22))the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, die inverse kosinus van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
59cos(cos1(22))the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, negatiewe, die inverse kosinus van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
60sin1(cosπ4)the inverse sine of, open paren, the cosine of, pi over 4, close parendie inverse sinus van, links hakkie, die kosinus van, pi oor 4, regs hakkie
61sin(cos112)sine, the inverse cosine of one halfsinus, die inverse kosinus van een helfte
62sin(tan11)sine, the inverse tangent of 1sinus, die inverse tangens van 1
63sin(tan11)the sine of, open paren, negative, the inverse tangent of 1, close parendie sinus van, links hakkie, negatiewe, die inverse tangens van 1, regs hakkie
64sin(tan1(1))the sine of, open paren, negative, the inverse tangent of negative 1, close parendie sinus van, links hakkie, negatiewe, die inverse tangens van negatiewe 1, regs hakkie
65sec1(secx)the inverse secant of secant xdie inverse sekans van sekans x
66arcsinxarc sine xboog sinus x
67arccosxarc cosine xboog kosinus x
68arctanxarc tangent xboog tangens x
69sinhxhyperbolic sine of xhiperboliese sinus van x
70coshxhyperbolic cosine of xhiperboliese kosinus van x
71tanhxhyperbolic tangent of xhiperboliese tangens van x
72cothxhyperbolic cotangent of xhiperboliese kotangens van x
73sechxhyperbolic secant of xhiperboliese sekans van x
74cschxhyperbolic cosecant of xhiperboliese kosekans van x
75sinh1xthe inverse hyperbolic sine of xdie inverse hiperboliese sinus van x
76cosh1xthe inverse hyperbolic cosine of xdie inverse hiperboliese kosinus van x
77tanh1xthe inverse hyperbolic tangent of xdie inverse hiperboliese tangens van x
78coth1xthe inverse hyperbolic cotangent of xdie inverse hiperboliese kotangens van x
79sech1xthe inverse hyperbolic secant of xdie inverse hiperboliese sekans van x
80csch1xthe inverse hyperbolic cosecant of xdie inverse hiperboliese kosekans van x
81sinh(sinh1x)hyperbolic sine of, the inverse hyperbolic sine of xhiperboliese sinus van, die inverse hiperboliese sinus van x
82cosh(cosh1x)hyperbolic cosine of, the inverse hyperbolic cosine of xhiperboliese kosinus van, die inverse hiperboliese kosinus van x
83tanh(tanh1x)hyperbolic tangent of, the inverse hyperbolic tangent of xhiperboliese tangens van, die inverse hiperboliese tangens van x
84coth(coth1x)hyperbolic cotangent of, the inverse hyperbolic cotangent of xhiperboliese kotangens van, die inverse hiperboliese kotangens van x
85sinh1(sinhx)the inverse hyperbolic sine of, hyperbolic sine of xdie inverse hiperboliese sinus van, hiperboliese sinus van x
86cosh1(coshx)the inverse hyperbolic cosine of, hyperbolic cosine of xdie inverse hiperboliese kosinus van, hiperboliese kosinus van x
87tanh1(tanhx)the inverse hyperbolic tangent of, hyperbolic tangent of xdie inverse hiperboliese tangens van, hiperboliese tangens van x
88coth1(cothx)the inverse hyperbolic cotangent of, hyperbolic cotangent of xdie inverse hiperboliese kotangens van, hiperboliese kotangens van x

Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_Auto:Roots_RootEnd.

0sin(π8)=1222the sine of, open paren, negative, pi over 8, close paren, equals negative one half the square root of 2 minus the square root of 2, end root, end rootdie sinus van, links hakkie, negatiewe, pi oor 8, regs hakkie, is gelyk aan negatiewe een helfte die vierkantswortel van 2 minus die vierkantswortel van 2, end wortel, end wortel
1tan3π8=2+121the tangent of, 3 pi over 8, equals, the fraction with numerator the square root of, the square root of 2, end root, plus 1, end root, and denominator the square root of, the square root of 2, end root, minus 1, end rootdie tangens van, 3 pi oor 8, is gelyk aan, die breuk met teller die vierkantswortel van, die vierkantswortel van 2, end wortel, plus 1, end wortel, en noemer die vierkantswortel van, die vierkantswortel van 2, end wortel, minus 1, end wortel
2tanπ12=1223the tangent of, pi over 12, equals one half the square root of 2 minus the square root of 3, end root, end rootdie tangens van, pi oor 12, is gelyk aan een helfte die vierkantswortel van 2 minus die vierkantswortel van 3, end wortel, end wortel

Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_TrigInverse.

0sin1xsine inverse of xsinus inverse van x
1cos1xcosine inverse of xkosinus inverse van x
2tan1xtangent inverse of xtangens inverse van x
3cot1xcotangent inverse of xkotangens inverse van x
4sec1xsecant inverse of xsekans inverse van x
5csc1xcosecant inverse of xkosekans inverse van x
6sin122sine inverse of, the fraction with numerator the square root of 2, and denominator 2sinus inverse van, die breuk met teller die vierkantswortel van 2, en noemer 2
7cos112cosine inverse of one halfkosinus inverse van een helfte
8tan117tangent inverse of 17tangens inverse van 17
9cot132cotangent inverse of 32kotangens inverse van 32
10sec1100secant inverse of 100sekans inverse van 100
11csc185cosecant inverse of 85kosekans inverse van 85
12sin1(x)sine inverse of negative xsinus inverse van negatiewe x
13cos1(x)cosine inverse of negative xkosinus inverse van negatiewe x
14tan1(x+12)tangent inverse of, open paren, negative x plus 12, close parentangens inverse van, links hakkie, negatiewe x plus 12, regs hakkie
15cot1(x1)cotangent inverse of, open paren, negative x minus 1, close parenkotangens inverse van, links hakkie, negatiewe x minus 1, regs hakkie
16sin1(sin0)sine inverse of sine 0sinus inverse van sinus 0
17csc1(cscx)cosecant inverse of cosecant xkosekans inverse van kosekans x
18cos(cos1(22))the cosine of, open paren, cosine inverse of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, kosinus inverse van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
19cos(cos1(22))the cosine of, open paren, negative, cosine inverse of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, negatiewe, kosinus inverse van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
20sin1(cosπ4)sine inverse of, open paren, the cosine of, pi over 4, close parensinus inverse van, links hakkie, die kosinus van, pi oor 4, regs hakkie
21sin(cos112)sine, cosine inverse of one halfsinus, kosinus inverse van een helfte
22sin(tan11)sine, tangent inverse of 1sinus, tangens inverse van 1
23sin(tan11)the sine of, open paren, negative, tangent inverse of 1, close parendie sinus van, links hakkie, negatiewe, tangens inverse van 1, regs hakkie
24sin(tan1(1))the sine of, open paren, negative, tangent inverse of negative 1, close parendie sinus van, links hakkie, negatiewe, tangens inverse van negatiewe 1, regs hakkie
25sec1(secx)secant inverse of secant xsekans inverse van sekans x

Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_ArcTrig.

0sin1xarc sine xboog sinus x
1cos1xarc cosine xboog kosinus x
2tan1xarc tangent xboog tangens x
3cot1xarc cotangent xboog kotangens x
4sec1xarc secant xboog sekans x
5csc1xarc cosecant xboog kosekans x
6sin122arc sine of, the fraction with numerator the square root of 2, and denominator 2boog sinus van, die breuk met teller die vierkantswortel van 2, en noemer 2
7cos112arc cosine one halfboog kosinus een helfte
8tan117arc tangent 17boog tangens 17
9cot132arc cotangent 32boog kotangens 32
10sec1100arc secant 100boog sekans 100
11csc185arc cosecant 85boog kosekans 85
12sin1(x)arc sine negative xboog sinus negatiewe x
13cos1(x)arc cosine negative xboog kosinus negatiewe x
14tan1(x+12)arc tangent of, open paren, negative x plus 12, close parenboog tangens van, links hakkie, negatiewe x plus 12, regs hakkie
15cot1(x1)arc cotangent of, open paren, negative x minus 1, close parenboog kotangens van, links hakkie, negatiewe x minus 1, regs hakkie
16sin1(sin0)arc sine, sine 0boog sinus, sinus 0
17csc1(cscx)arc cosecant, cosecant xboog kosekans, kosekans x
18cos(cos1(22))the cosine of, open paren, arc cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, boog kosinus van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
19cos(cos1(22))the cosine of, open paren, negative, arc cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close parendie kosinus van, links hakkie, negatiewe, boog kosinus van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie
20sin1(cosπ4)arc sine of, open paren, the cosine of, pi over 4, close parenboog sinus van, links hakkie, die kosinus van, pi oor 4, regs hakkie
21sin(cos112)sine, arc cosine one halfsinus, boog kosinus een helfte
22sin(tan11)sine, arc tangent 1sinus, boog tangens 1
23sin(tan11)the sine of, open paren, negative, arc tangent 1, close parendie sinus van, links hakkie, negatiewe, boog tangens 1, regs hakkie
24sin(tan1(1))the sine of, open paren, negative, arc tangent negative 1, close parendie sinus van, links hakkie, negatiewe, boog tangens negatiewe 1, regs hakkie
25sec1(secx)arc secant, secant xboog sekans, sekans x

Afrikaans Clearspeak Units tests. Locale: af, Style: Verbose.

0in2square incheskwadraat duim
1s2seconds to the second powerkwadraat sekondes
2m2square meterskwadraat meter
3in3cubic incheskubiek duim
4s3seconds to the third powerkubiek sekondes
5m3cubic meterskubiek meter
6in-1reciprocal inchesresiprook duim
7in-1mm-1reciprocal inches per millimeterresiprook duim per millimeter
8inmminches per millimeterduim per millimeter
9kmkilometerskilometer
10Aamperesampere
11Ωohmsohm
12kilohmskilohm
13°CCelsiusSelsius
14minminmin of minutesmin van minute
153km3 kilometers3 kilometer
16km+skilometers plus secondskilometer plus sekondes
17km2square kilometerskwadraat kilometer
18m3cubic meterskubiek meter
19km4kilometers to the fourth powerkilometer tot die vierde mag
20m-1reciprocal metersresiprook meter
21sm-1seconds per metersekondes per meter
22sm-1seconds per meter to the negative 1 powersekondes per meter tot die negatiewe 1 mag
23sm-1seconds per meter to the negative 1 powersekondes per meter tot die negatiewe 1 mag
243m-13 reciprocal meters3 resiprook meter
25kmhkilometers per hourkilometer per uur
26NkmhNewtons kilometers per hourNewton kilometer per uur
27mkmm over kilometersm oor kilometer
283kmh3 kilometers hours3 kilometer ure
29s3mkmhseconds 3 m kilometers hourssekondes 3 m kilometer ure
30kms23mkmhkilometers seconds to the second power 3 m kilometers hourskilometer kwadraat sekondes 3 m kilometer ure
313mkmhNs23 m kilometers hours the fraction with numerator N and denominator seconds to the second power3 m kilometer ure die breuk met teller N en noemer kwadraat sekondes
323mkmhNs23 m kilometers hours Newtons per second to the second power3 m kilometer ure Newton per kwadraat sekonde
334mm4 millimeters4 millimeter
341mm1 millimeter1 millimeter
354mm4 millimeters4 millimeter
361mm1 millimeter1 millimeter
37msmeters secondsmeter sekondes
38msm secondsm sekondes
39msmeters smeter s
40msmeters secondsmeter sekondes
41msm secondsm sekondes
42msmeters smeter s
43mslmeters seconds litersmeter sekondes lieters
4463360in=63360in.=63360=63360inches=5280ft=5280ft.=5280=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile
458000li=8000li.=8000links=320rd=320rd.=320rods=80ch=80ch.=80chains=8fur=8fur.=8furlongs=1mi=1mi.=1mile8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile8000 links is gelyk aan 8000 links is gelyk aan 8000 links is gelyk aan 320 stawe is gelyk aan 320 stawe is gelyk aan 320 rods is gelyk aan 80 kettings is gelyk aan 80 kettings is gelyk aan 80 chains is gelyk aan 8 furlong is gelyk aan 8 furlong is gelyk aan 8 furlongs is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile
4643560sq ft=43560sq. ft.=43560ft2=435602=43560square feet=4840sq yd=4840sq. yd.=4840yd2=4840square yards=160sq rd=160sq. rd.=160rd2=160square rods=1ac=1ac.=1acre=1640sq mi=1640sq. mi.=1640mi2=1640square miles43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles43560 vierkant 'n voet is gelyk aan 43560 vierkant 'n voet is gelyk aan 43560 kwadraat voet is gelyk aan 43560 voet kwadraat is gelyk aan 43560 square feet is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 kwadraat jaart is gelyk aan 4840 square yards is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 kwadraat stawe is gelyk aan 160 square rods is gelyk aan 1 akker is gelyk aan 1 akker is gelyk aan 1 acre is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 kwadraat myl is gelyk aan 1 oor 640 square miles
4746656cu in=46656cu. in.=46656in3=466563=46656cubic inches=27cu ft=27cu. ft.=27ft3=273=27cubic feet=1cu yd=1cu. yd.=1yd3=1cubic yard46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard46656 kubieke duim is gelyk aan 46656 kubieke duim is gelyk aan 46656 kubiek duim is gelyk aan 46656 duim tot die mag drie is gelyk aan 46656 cubic inches is gelyk aan 27 kubieke voet is gelyk aan 27 kubieke voet is gelyk aan 27 kubiek voet is gelyk aan 27 voet tot die mag drie is gelyk aan 27 cubic feet is gelyk aan 1 kubieke jaart is gelyk aan 1 kubieke jaart is gelyk aan 1 kubiek jaart is gelyk aan 1 cubic yard
481024fl dr=1024fl. dr.=1024fluid drams=768tsp=768tsp.=768teaspoons=256Tbsp=256Tbsp.=256tablespoons=128fl oz=128fl. oz.=128fluid ounces=16cp=16cp.=16cups=8pt=8pt.=8pints=4qt=4qt.=4quarts=1gal=1gal.=1gallon1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon1024 vloeibare dragmes is gelyk aan 1024 vloeibare dragmes is gelyk aan 1024 fluid drams is gelyk aan 768 teelepels is gelyk aan 768 teelepels is gelyk aan 768 teaspoons is gelyk aan 256 eetlepels is gelyk aan 256 eetlepels is gelyk aan 256 tablespoons is gelyk aan 128 vloeibare onse is gelyk aan 128 vloeibare onse is gelyk aan 128 fluid ounces is gelyk aan 16 koppies is gelyk aan 16 koppies is gelyk aan 16 cups is gelyk aan 8 pinte is gelyk aan 8 pinte is gelyk aan 8 pints is gelyk aan 4 kwarte is gelyk aan 4 kwarte is gelyk aan 4 quarts is gelyk aan 1 galon is gelyk aan 1 galon is gelyk aan 1 gallon
49256dr=256dr.=256drams=16oz=16oz.=16ounces=1#=1lb=1lb.=1pounds=100cwt=100cwt.=100hundredweights=2000tons256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons256 dragmes is gelyk aan 256 dragmes is gelyk aan 256 drams is gelyk aan 16 onse is gelyk aan 16 onse is gelyk aan 16 ounces is gelyk aan 1 # is gelyk aan 1 pond is gelyk aan 1 pond is gelyk aan 1 pounds is gelyk aan 100 honderdgewigte is gelyk aan 100 honderdgewigte is gelyk aan 100 hundredweights is gelyk aan 2000 tons
5063360in=63360in.=63360=63360inches=5280ft=5280ft.=5280=5280feet=1760yd=1760yd.=1760yards=1mi=1mi.=1mile63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile
511J=1kg·m2·s-21 joule equals 1 kilogram times square meters times seconds to the negative 2 power1 joule is gelyk aan 1 kilogram dot kwadraat meter dot sekondes tot die negatiewe 2 mag
521J=1kgm2s-21 joule equals 1 kilogram square meters seconds to the negative 2 power1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag
531J=1·kg·m2·s-21 joule equals 1 kilogram square meters seconds to the negative 2 power1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag
54in3cubic incheskubiek duim
55kmkgs2Jkilometers kilograms seconds to the second power per joulekilometer kilogram kwadraat sekondes per joule
563km1kgs2J3 kilometers 1 kilogram seconds to the second power over joules3 kilometer 1 kilogram kwadraat sekondes oor joule
571kmkgs2J1 kilometer kilograms seconds to the second power over joules1 kilometer kilogram kwadraat sekondes oor joule
581kmkgs25J1 kilometer kilograms seconds to the second power over 5 joules1 kilometer kilogram kwadraat sekondes oor 5 joule
59kmkilometerskilometer
603kmkgs2J3 kilometers kilograms seconds to the second power joules3 kilometer kilogram kwadraat sekondes joule
613kmkgs2J3 kilometers kilograms seconds to the second power joules3 kilometer kilogram kwadraat sekondes joule
623km4kgs2J3 kilometers 4 kilograms seconds to the second power joules3 kilometer 4 kilogram kwadraat sekondes joule
633km1kgs2J3 kilometers 1 kilogram seconds to the second power joules3 kilometer 1 kilogram kwadraat sekondes joule
641kms+2kms+0kms+akms+1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus1 kilometer sekondes plus 2 kilometer sekondes plus 0 kilometer sekondes plus a kilometer sekondes plus
651km+2km+0km+akm1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers1 kilometer plus 2 kilometer plus 0 kilometer plus a kilometer
66123kg1 and two thirds kilograms1 en twee derdes kilogram
67123kgkm1 and two thirds kilograms kilometers1 en twee derdes kilogram kilometer
681km2kgkm1 kilometer 2 kilograms kilometers1 kilometer 2 kilogram kilometer
691kmkgs+2kmkgs+0kmkgs+akmkgs+1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus1 kilometer kilogram sekondes plus 2 kilometer kilogram sekondes plus 0 kilometer kilogram sekondes plus a kilometer kilogram sekondes plus
701$1 dollar1 doller
71$11 dollars1 dollers
72$dollarsdollers
73$dollarsdollers
742$2 dollars2 dollers
75$22 dollars2 dollers
761$+2$+0$+a$1 dollar plus 2 dollars plus 0 dollars plus a dollars1 doller plus 2 dollers plus 0 dollers plus a dollers
771$+$2+0$+$a1 dollar plus 2 dollars plus 0 dollars plus a dollars1 doller plus 2 dollers plus 0 dollers plus a dollers
781+2+0+a1 euro plus 2 euros plus 0 euros plus a euros1 euro plus 2 euros plus 0 euros plus a euros
791+2+0+a1 pound plus 2 pounds plus 0 pounds plus a pounds1 pond plus 2 ponde plus 0 ponde plus a ponde

Afrikaans Clearspeak Units tests. Locale: af, Style: Currency_Position.

01$1 dollars1 dollers
1$1dollars 1dollers 1
2$dollarsdollers
3$dollarsdollers
42$2 dollars2 dollers
5$2dollars 2dollers 2
61$+2$+0$+a$1 dollars plus 2 dollars plus 0 dollars plus a dollars1 dollers plus 2 dollers plus 0 dollers plus a dollers
71$+$2+0$+$a1 dollars plus dollars 2 plus 0 dollars plus dollars a1 dollers plus dollers 2 plus 0 dollers plus dollers a

Afrikaans Clearspeak Units tests. Locale: af, Style: Currency_Prefix.

01$dollars 1dollers 1
1$1dollars 1dollers 1
2$dollarsdollers
3$dollarsdollers
42$dollars 2dollers 2
5$2dollars 2dollers 2
61$+2$+0$+a$dollars 1 plus dollars 2 plus dollars 0 plus dollars adollers 1 plus dollers 2 plus dollers 0 plus dollers a
71$+$2+0$+$adollars 1 plus dollars 2 plus dollars 0 plus dollars adollers 1 plus dollers 2 plus dollers 0 plus dollers a

Afrikaans Clearspeak Neutral Fences rule tests. Locale: af, Style: Verbose.

0|a|the absolute value of adie absolute waarde van a
1athe absolute value of adie absolute waarde van a
2¦a¦the absolute value of adie absolute waarde van a
3athe metric of adie norm van a
4athe metric of adie norm van a
5athe metric of adie norm van a
6athe metric of adie norm van a
7adivides a double vertical bargedeel deur a dubbel vertikale streep
8aparallel to a double vertical barparalel aan a dubbel vertikale streep
9a¦divides a dividesgedeel deur a gedeel deur
10atriple vertical bar a double vertical bartrippel afstreep a dubbel vertikale streep
11aba divides ba gedeel deur b
12a|ba divides ba gedeel deur b
13a¦ba divides ba gedeel deur b
14aba double vertical bar ba dubbel vertikale streep b
15aba parallel to ba paralel aan b
16aba triple vertical bar ba trippel afstreep b
17fgf divides gf gedeel deur g
18f|gf divides gf gedeel deur g
19f¦gf divides gf gedeel deur g
20fgf double vertical bar gf dubbel vertikale streep g
21fgf parallel to gf paralel aan g
22fgf triple vertical bar gf trippel afstreep g
23singsine triple vertical bar gsinus trippel afstreep g
24f|a|f of, the absolute value of af van, die absolute waarde van a
25g|a|g of, the absolute value of ag van, die absolute waarde van a
26h|a|h of, the absolute value of ah van, die absolute waarde van a
27r|a|r times, the absolute value of ar maal, die absolute waarde van a
28sin|a|sine, the absolute value of asinus, die absolute waarde van a
29|a|the sum of, the absolute value of adie som van, die absolute waarde van a
30faf of, the metric of af van, die norm van a
31gag of, the metric of ag van, die norm van a
32hah of, the metric of ah van, die norm van a
33rar times, the metric of ar maal, die norm van a
34sinasine, the metric of asinus, die norm van a
35athe sum of, the metric of adie som van, die norm van a

Afrikaans Clearspeak Neutral Fences rule tests. Locale: af, Style: AbsoluteValue_AbsEnd.

0|a|the absolute value of a, end absolute valuedie absolute waarde van a, end absolute waarde van
1athe absolute value of a, end absolute valuedie absolute waarde van a, end absolute waarde van
2¦a¦the absolute value of a, end absolute valuedie absolute waarde van a, end absolute waarde van
3athe metric of a, end metricdie norm van a, end metric
4athe metric of a, end metricdie norm van a, end metric
5athe metric of a, end metricdie norm van a, end metric
6athe metric of a, end metricdie norm van a, end metric
7adivides a double vertical bargedeel deur a dubbel vertikale streep
8aparallel to a double vertical barparalel aan a dubbel vertikale streep
9a¦divides a dividesgedeel deur a gedeel deur
10atriple vertical bar a double vertical bartrippel afstreep a dubbel vertikale streep
11aba divides ba gedeel deur b
12a|ba divides ba gedeel deur b
13a¦ba divides ba gedeel deur b
14aba double vertical bar ba dubbel vertikale streep b
15aba parallel to ba paralel aan b
16aba triple vertical bar ba trippel afstreep b
17f|a|f of, the absolute value of a, end absolute valuef van, die absolute waarde van a, end absolute waarde van
18g|a|g of, the absolute value of a, end absolute valueg van, die absolute waarde van a, end absolute waarde van
19h|a|h of, the absolute value of a, end absolute valueh van, die absolute waarde van a, end absolute waarde van
20r|a|r times, the absolute value of a, end absolute valuer maal, die absolute waarde van a, end absolute waarde van
21sin|a|sine, the absolute value of a, end absolute valuesinus, die absolute waarde van a, end absolute waarde van
22|a|the sum of, the absolute value of a, end absolute valuedie som van, die absolute waarde van a, end absolute waarde van
23faf of, the metric of a, end metricf van, die norm van a, end metric
24gag of, the metric of a, end metricg van, die norm van a, end metric
25hah of, the metric of a, end metrich van, die norm van a, end metric
26rar times, the metric of a, end metricr maal, die norm van a, end metric
27sinasine, the metric of a, end metricsinus, die norm van a, end metric
28athe sum of, the metric of a, end metricdie som van, die norm van a, end metric
29fgf divides gf gedeel deur g
30f|gf divides gf gedeel deur g
31f¦gf divides gf gedeel deur g
32fgf double vertical bar gf dubbel vertikale streep g
33fgf parallel to gf paralel aan g
34fgf triple vertical bar gf trippel afstreep g
35singsine triple vertical bar gsinus trippel afstreep g