## Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Auto.

 0 $|x|$ the absolute value of x die absolute waarde van x 1 $|x+1|$ the absolute value of x plus 1 die absolute waarde van x plus 1 2 $|x|+1$ the absolute value of x, plus 1 die absolute waarde van x, plus 1 3 $|x|+|y|\ge |z|$ the absolute value of x, plus, the absolute value of y, is greater than or equal to, the absolute value of z die absolute waarde van x, plus, die absolute waarde van y, groter of gelyk aan, die absolute waarde van z 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

## Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_AbsEnd.

 0 $|x|$ the absolute value of x, end absolute value die absolute waarde van x, end absolute waarde van 1 $|x+1|$ the absolute value of x plus 1, end absolute value die absolute waarde van x plus 1, end absolute waarde van 2 $|x|+1$ the absolute value of x, end absolute value, plus 1 die absolute waarde van x, end absolute waarde van, plus 1 3 $|x|+|y|\ge |z|$ the absolute value of x, end absolute value, plus, the absolute value of y, end absolute value, is greater than or equal to, the absolute value of z, end absolute value die absolute waarde van x, end absolute waarde van, plus, die absolute waarde van y, end absolute waarde van, groter of gelyk aan, die absolute waarde van z, end absolute waarde van 4 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 5 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 6 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 7 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 8 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 9 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 10 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

## Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Cardinality.

 0 $|S|$ the cardinality of S die kardinaliteit van S

## Afrikaans Clearspeak AbsoluteValue rule tests. Locale: af, Style: AbsoluteValue_Determinant.

 0 $|M|$ the determinant of M die determinant van M

## Afrikaans Clearspeak CapitalLetters rule tests. Locale: af, Style: Caps_Auto.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine A over a, equals, sine B over b sinus A oor a, is gelyk aan, sinus B oor b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine C c kwadraat is gelyk aan a kwadraat plus b kwadraat minus 2 a b kosinus C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent A equals, a over b tangens A is gelyk aan, a oor b 3 $AB$ A B A B 4 $aA$ a A a A 5 $bA$ b A b A 6 $Ba$ B a B a 7 $\angle ABC$ angle A B C hoek A B C 8 $m\angle ABC$ the measure of angle A B C die hoekmaat hoek A B C 9 $m\angle A$ the measure of angle A die hoekmaat hoek A

## Afrikaans Clearspeak CapitalLetters rule tests. Locale: af, Style: Caps_SayCaps.

 0 $\frac{\mathrm{sin}A}{a}=\frac{\mathrm{sin}B}{b}$ sine cap A over a, equals, sine cap B over b sinus hoofletter A oor a, is gelyk aan, sinus hoofletter B oor b 1 ${c}^{2}={a}^{2}+{b}^{2}-2ab\mathrm{cos}C$ c squared equals a squared plus b squared minus 2 a b cosine cap C c kwadraat is gelyk aan a kwadraat plus b kwadraat minus 2 a b kosinus hoofletter C 2 $\mathrm{tan}A=\frac{a}{b}$ tangent cap A equals, a over b tangens hoofletter A is gelyk aan, a oor b 3 $AB$ cap A, cap B hoofletter A, hoofletter B 4 $aA$ a, cap A a, hoofletter A 5 $bA$ b, cap A b, hoofletter A 6 $Ba$ cap B, a hoofletter B, a 7 $\angle ABC$ angle cap A, cap B, cap C hoek hoofletter A, hoofletter B, hoofletter C 8 $m\angle ABC$ the measure of angle cap A, cap B, cap C die hoekmaat hoek hoofletter A, hoofletter B, hoofletter C 9 $m\angle A$ the measure of angle cap A die hoekmaat hoek hoofletter A 10 $\angle A$ angle cap A hoek hoofletter A

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Verbose.

0$fg\left(x\right)$f of, g of xf van, g van x
1$fgx=f\left(x\right)+g\left(x\right)$f of, g of x, equals f of x, plus g of xf van, g van x, is gelyk aan f van x, plus g van x
2$\mathrm{sin}\left(x\right)y$sine x ysinus x y
3$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
4$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
5$\begin{array}{c}a\\ \end{array}$2 lines, Line 1: a. Line 2: blank2 lyne, Lyn 1: a. Lyn 2: leeg
6$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b2 lyne, Lyn 1: a; is gelyk aan; b
7$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg
8$\begin{array}{ccc}a& =& b\\ \end{array}$2 lines, Line 1: a; equals; b. Line 2: blank2 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: leeg
9$\begin{array}{ccc}a& =& b\\ 1& & 2\end{array}$2 lines, Line 1: a; equals; b. Line 2: 1; blank; 22 lyne, Lyn 1: a; is gelyk aan; b. Lyn 2: 1; leeg; 2
10$45°{10}^{\prime }{20}^{″}$45 degrees, 10 minutes, 20 seconds45 grade, 10 minute, 20 sekondes
11$1°{10}^{\prime }{20}^{″}$1 degree, 10 minutes, 20 seconds1 graad, 10 minute, 20 sekondes
12$45°{1}^{\prime }{20}^{″}$45 degrees, 1 minute, 20 seconds45 grade, 1 minuut, 20 sekondes
13$45°{10}^{\prime }{1}^{″}$45 degrees, 10 minutes, 1 second45 grade, 10 minute, 1 sekonde
14${1}^{\prime }{20}^{″}$1 foot, 20 inches1 voet, 20 duim
15${10}^{\prime }{1}^{″}$10 feet, 1 inch10 voet, 1 duim
16$\overline{)12}$enclosed with box 12omring deur boks 12
17$\overline{)12}$crossed out 12doodgetrek 12
18$\underset{\overline{)12}}{2}$12 crossed out with 212 oorskryf met 2
19$\underset{2}{\overline{)12}}$12 crossed out with 212 oorskryf met 2
20$\stackrel{2}{\overline{)12}}$12 crossed out with 212 oorskryf met 2
21$\stackrel{\overline{)12}}{2}$12 crossed out with 212 oorskryf met 2
22$\overline{)A}$vertical bar Avertikale lyn A
23$\overline{)A}$A horizontal barA horisontale lyn
24$\overline{)A}$A vertical barA vertikale lyn
25$\overline{)A}$A over horizontal barA oor horisontale lyn
26$\sqrt{\sqrt[3]{a}+b}$the square root of, the cube root of a, plus bdie vierkantswortel van, die derdemagswortel van a, plus b
27$\sqrt{\sqrt[4]{a}+b}$the square root of, the fourth root of a, plus bdie vierkantswortel van, die vierde wortel van a, plus b
28$\sqrt{\sqrt{a}+b}$the square root of, the square root of a, plus bdie vierkantswortel van, die vierkantswortel van a, plus b
29${}_{a}{}^{b}x_{c}^{d}$left sub a left super b x right sub c right super dlinker onderskrif a linker boskrif b x regter onderskrif c regter boskrif d
30${}_{a}{}^{g}{}_{b}{}^{h}x_{c}^{e}{}_{d}{}^{f}$left sub a b left super g h x right sub c d right super e flinker onderskrif a b linker boskrif g h x regter onderskrif c d regter boskrif e f
31${}_{a}{}^{b}x^{d}$left sub a left super b x; right super dlinker onderskrif a linker boskrif b x; regter boskrif d
32${}_{a}{}^{b}x_{c}r$left sub a left super b x right sub c; rlinker onderskrif a linker boskrif b x regter onderskrif c; r
33$l{}^{b}x_{c}^{d}$l; left super b x right sub c right super dl; linker boskrif b x regter onderskrif c regter boskrif d
34${}_{a}x_{c}^{d}$left sub a; x right sub c right super dlinker onderskrif a; x regter onderskrif c regter boskrif d
35$\left\{x\notin A|B\right\}$the set of all x not in A such that Bdie versameling van alle x nie in A sodat B
36$\left\{B\right\}$the set Bdie versameling B
37$\left\{\right\}$the empty setdie leë versameling
38${\mathbb{Q}}^{+}$the positive rational numbersdie positiewe rasionele getalle
39${ℚ}^{+}$the positive rational numbersdie positiewe rasionele getalle
40${\mathbb{Q}}^{-}$the negative rational numbersdie negatiewe rasionele getalle
41${ℚ}^{-}$the negative rational numbersdie negatiewe rasionele getalle
42${\mathbb{Q}}^{2}$q-twoq-twee
43${ℚ}^{2}$q-twoq-twee
44${\mathbb{N}}^{2}$n-twon-twee
45${ℕ}^{2}$n-twon-twee
46

# a

aa
47$\frac{10}{20}$10 over 2010 oor 20
48$\frac{2\mathrm{km}}{\text{b}}$2 kilometers over b2 kilometer oor b
49$1.4\overline{3}$the repeating decimal 1 point 4 followed by repeating digit 3die herhalende dessimaal 1 punt 4 gevolg deur herhalende syfer 3
50${3}^{{2}^{2}}$3 raised to the 2 squared power3 verhef tot die 2 kwadraat mag
51${3}^{{i}^{2}}$3 raised to the i squared power3 verhef tot die i kwadraat mag
52${3}^{{\frac{2}{3}}^{2}}$3 raised to the two thirds squared power3 verhef tot die twee derdes kwadraat mag
53${3}^{{2}^{3}}$3 raised to the 2 cubed power3 verhef tot die 2 tot die mag drie mag
54${3}^{{i}^{3}}$3 raised to the i cubed power3 verhef tot die i tot die mag drie mag
55${3}^{{\frac{2}{3}}^{3}}$3 raised to the two thirds cubed power3 verhef tot die twee derdes tot die mag drie mag
56$a\le b=c$a is less than or equal to b equals ca kleiner of gelyk aan b is gelyk aan c
57${3}^{\mathrm{sin}\left(2+x\right)}$3 raised to the sine of, open paren, 2 plus x, close paren, power3 verhef tot die sinus van, links hakkie, 2 plus x, regs hakkie, mag
58$\sum ^{I}$sum under Isom onder I
59$\stackrel{B}{A}$A under BA onder B
60$\mathrm{det}A$determinant Adeterminant A

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Prime_Angle.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 45 grade, 10 minute, 20 sekondes 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 1 graad, 10 minute, 20 sekondes 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 45 grade, 1 minuut, 20 sekondes 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 45 grade, 10 minute, 1 sekonde 4 ${1}^{\prime }{20}^{″}$ 1 minute, 20 seconds 1 minuut, 20 sekondes 5 ${10}^{\prime }{1}^{″}$ 10 minutes, 1 second 10 minute, 1 sekonde

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Prime_Length.

 0 $45°{10}^{\prime }{20}^{″}$ 45 degrees, 10 minutes, 20 seconds 45 grade, 10 minute, 20 sekondes 1 $1°{10}^{\prime }{20}^{″}$ 1 degree, 10 minutes, 20 seconds 1 graad, 10 minute, 20 sekondes 2 $45°{1}^{\prime }{20}^{″}$ 45 degrees, 1 minute, 20 seconds 45 grade, 1 minuut, 20 sekondes 3 $45°{10}^{\prime }{1}^{″}$ 45 degrees, 10 minutes, 1 second 45 grade, 10 minute, 1 sekonde 4 ${1}^{\prime }{20}^{″}$ 1 foot, 20 inches 1 voet, 20 duim 5 ${10}^{\prime }{1}^{″}$ 10 feet, 1 inch 10 voet, 1 duim

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Enclosed_EndEnclose.

 0 $\overline{)12}$ enclosed with box 12 end enclosed omring deur boks 12 end omring deur 1 $\overline{)12}$ crossed out 12 end crossout doodgetrek 12 end 2 $\underset{\overline{)12}}{2}$ crossed out 12 with 2 end crossout oorskryf 12 met 2 end oorskryf 3 $\underset{2}{\overline{)12}}$ crossed out 12 with 2 end crossout oorskryf 12 met 2 end oorskryf 4 $\stackrel{2}{\overline{)12}}$ crossed out 12 with 2 end crossout oorskryf 12 met 2 end oorskryf 5 $\stackrel{\overline{)12}}{2}$ crossed out 12 with 2 end crossout oorskryf 12 met 2 end oorskryf

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Roots_PosNegSqRoot.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b die positiewe vierkantswortel van, die positiewe vierkantswortel van a, plus b

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{\sqrt{a}+b}$ the positive square root of, the positive square root of a, plus b, end root die positiewe vierkantswortel van, die positiewe vierkantswortel van a, plus b, end wortel 1 $\sqrt{-\sqrt{a}+b}$ the positive square root of, the negative square root of a, end root, plus b, end root die positiewe vierkantswortel van, die negatiewe vierkantswortel van a, end wortel, plus b, end wortel

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Belongs.

 0 $\left\{x\notin A|B\right\}$ the set of all x not belonging to A such that B die versameling van alle x behoordnie aan A sodat B

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Element.

 0 $\left\{x\notin A|B\right\}$ the set of all x not an element of A such that B die versameling van alle x nie 'n element van A sodat B

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: SetMemberSymbol_Member.

 0 $\left\{x\notin A|B\right\}$ the set of all x not a member of A such that B die versameling van alle x nie 'n element van A sodat B

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: MultiLineLabel_Case.

 0 $\begin{array}{c}f\left(x\right)=-x\text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0 2 gevalle, Geval 1: f van x, is gelyk aan negatiewe x, if x kleiner as 0. Geval 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: MultiLineLabel_Constraint.

 0 $\begin{array}{cc}f\left(x\right)=-x& \text{if}x<0\\ f\left(x\right)=x\text{if}x\ge 0\end{array}$ 2 constraints, Constraint 1: f of x, equals negative x; if x is less than 0. Constraint 2: f of x, equals x, if x is greater than or equal to 0 2 beperkings, beperking 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. beperking 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: VerticalLine_SuchThat.

 0 $3|6$ 3 such that 6 3 sodat 6

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Matrix_EndVector.

 0 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. sluit determinant

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Paren_Speak.

 0 $\left(f+g\right)\left(2+x\right)$ open paren, f plus g, close paren, of, open paren, 2 plus x, close paren links hakkie, f plus g, regs hakkie, van, links hakkie, 2 plus x, regs hakkie

## Afrikaans Clearspeak Coverage tests. Locale: af, Style: Exponent_Ordinal.

 0 ${x}^{A}$ x to the A x tot die A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: Verbose.

 0 $\left\{z\in A:z\right\}$ the set of all z in A such that z die versameling van alle z in A sodat z 1 $\left\{z∊A:z\right\}$ the set of all z in A such that z die versameling van alle z in A sodat z 2 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z die versameling van alle z nie in A sodat z 3 $\left\{A\ni z:z\right\}$ the set of all A contains as member z such that z die versameling van alle A bevat as lid z sodat z 4 $\left\{A∍z:z\right\}$ the set of all A contains as member z such that z die versameling van alle A bevat as lid z sodat z 5 $\left\{A\not\ni z:z\right\}$ the set of all A does not contain as member z such that z die versameling van alle A bevat nie as lid z sodat z 6 $z\in A$ z is a member of A z is 'n element van A 7 $z∊A$ z is a member of A z is 'n element van A 8 $z\notin A$ z is not a member of A z is nie 'n element van nie A 9 $A\ni z$ A contains as member z A bevat as lid z 10 $A∍z$ A contains as member z A bevat as lid z 11 $A\not\ni z$ A does not contain as member z A bevat nie as lid z 12 $\sum _{z\in A}$ sum over z is a member of A som oor z is 'n element van A 13 $\sum _{z∊A}$ sum over z is a member of A som oor z is 'n element van A 14 $\sum _{z\notin A}$ sum over z is not a member of A som oor z is nie 'n element van nie A 15 $\sum _{A\ni z}$ sum over A contains as member z som oor A bevat as lid z 16 $\sum _{A∍z}$ sum over A contains as member z som oor A bevat as lid z 17 $\sum _{A\not\ni z}$ sum over A does not contain as member z som oor A bevat nie as lid z

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Auto.

 0 $z\in A$ z is a member of A z is 'n element van A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z die versameling van alle z in A sodat z 2 $\sum _{z\in A}$ sum over z is a member of A som oor z is 'n element van A 3 $z\notin A$ z is not a member of A z is nie 'n element van nie A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z die versameling van alle z nie in A sodat z 5 $\sum _{z\notin A}$ sum over z is not a member of A som oor z is nie 'n element van nie A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Member.

 0 $z\in A$ z is a member of A z is 'n element van A 1 $\left\{z\in A:z\right\}$ the set of all z member of A such that z die versameling van alle z element van A sodat z 2 $\sum _{z\in A}$ sum over z is a member of A som oor z is 'n element van A 3 $z\notin A$ z is not a member of A z is nie 'n element vanf A 4 $\left\{z\notin A:z\right\}$ the set of all z not a member of A such that z die versameling van alle z nie 'n element van A sodat z 5 $\sum _{z\notin A}$ sum over z is not a member of A som oor z is nie 'n element vanf A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Element.

 0 $z\in A$ z is an element of A z is 'n element van A 1 $\left\{z\in A:z\right\}$ the set of all z element of A such that z die versameling van alle z element van A sodat z 2 $\sum _{z\in A}$ sum over z is an element of A som oor z is 'n element van A 3 $z\notin A$ z is not an element of A z is nie 'n element van A 4 $\left\{z\notin A:z\right\}$ the set of all z not an element of A such that z die versameling van alle z nie 'n element van A sodat z 5 $\sum _{z\notin A}$ sum over z is not an element of A som oor z is nie 'n element van A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_In.

 0 $z\in A$ z is in A z is in A 1 $\left\{z\in A:z\right\}$ the set of all z in A such that z die versameling van alle z in A sodat z 2 $\sum _{z\in A}$ sum over z is in A som oor z is in A 3 $z\notin A$ z is not in A z is nie in A 4 $\left\{z\notin A:z\right\}$ the set of all z not in A such that z die versameling van alle z nie in A sodat z 5 $\sum _{z\notin A}$ sum over z is not in A som oor z is nie in A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Belongs.

 0 $z\in A$ z belongs to A z behoord aan A 1 $\left\{z\in A:z\right\}$ the set of all z belonging to A such that z die versameling van alle z behoord aan A sodat z 2 $\sum _{z\in A}$ sum over z belongs to A som oor z behoord aan A 3 $z\notin A$ z does not belong to A z behoord nie aan A 4 $\left\{z\notin A:z\right\}$ the set of all z not belonging to A such that z die versameling van alle z behoordnie aan A sodat z 5 $\sum _{z\notin A}$ sum over z does not belong to A som oor z behoord nie aan A

## Afrikaans Clearspeak Coverage for Elements symbol tests. Locale: af, Style: SetMemberSymbol_Belongs:Caps_SayCaps:Fraction_GeneralEndFrac.

 0 $\left\{a\in A|\frac{1}{a}\right\}$ the set of all a belonging to, cap A such that, the fraction with numerator 1, and denominator a, end fraction die versameling van alle a behoord aan, hoofletter A sodat, die breuk met teller 1, en noemer a, end breuk

## Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_Auto.

 0 ${3}^{2}$ 3 squared 3 kwadraat 1 ${3}^{3}$ 3 cubed 3 tot die mag drie 2 ${3}^{5}$ 3 to the fifth power 3 tot die vyfde mag 3 ${3}^{1}$ 3 to the first power 3 tot die eerste mag 4 ${b}^{1}$ b to the first power b tot die eerste mag 5 ${3}^{5.0}$ 3 raised to the 5.0 power 3 verhef tot die 5,0 mag 6 ${3}^{0}$ 3 to the 0 power 3 tot die 0 mag 7 ${4}^{11}$ 4 to the 11th power 4 tot die 11. mag 8 ${3}^{-2}$ 3 to the negative 2 power 3 tot die negatiewe 2 mag 9 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 verhef tot die negatiewe 2,0 mag 10 ${4}^{x}$ 4 to the x-th power 4 tot die x-de mag 11 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 verhef tot die y plus 2 mag 12 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag 13 ${p}_{1}^{2}$ p sub 1, squared p onderskrif 1, kwadraat 14 ${p}_{1}^{3}$ p sub 1, cubed p onderskrif 1, tot die mag drie 15 ${p}_{1}^{4}$ p sub 1, to the fourth power p onderskrif 1, tot die vierde mag 16 ${p}_{1}^{10}$ p sub 1, to the tenth power p onderskrif 1, tot die tiende mag 17 ${p}_{1}^{x+1}$ p sub 1, raised to the x plus 1 power p onderskrif 1, verhef tot die x plus 1 mag 18 ${p}_{{x}_{1}}^{2}$ p sub, x sub 1, squared p onderskrif, x onderskrif 1, kwadraat 19 ${p}_{{x}_{1}}^{3}$ p sub, x sub 1, cubed p onderskrif, x onderskrif 1, tot die mag drie 20 ${p}_{{x}_{1}}^{4}$ p sub, x sub 1, to the fourth power p onderskrif, x onderskrif 1, tot die vierde mag 21 ${p}_{{x}_{1}}^{10}$ p sub, x sub 1, to the tenth power p onderskrif, x onderskrif 1, tot die tiende mag 22 ${p}_{{x}_{1}}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag 23 ${3}^{{2}^{2}}$ 3 raised to the 2 squared power 3 verhef tot die 2 kwadraat mag 24 ${3}^{2{x}^{2}}$ 3 raised to the 2 x squared power 3 verhef tot die 2 x kwadraat mag 25 ${5}^{{2}^{3}}$ 5 raised to the 2 cubed power 5 verhef tot die 2 tot die mag drie mag 26 ${5}^{2{x}^{3}}$ 5 raised to the 2 x cubed power 5 verhef tot die 2 x tot die mag drie mag 27 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 squared plus 1, end exponent 3 verhef tot die eksponent, 2 kwadraat plus 1, end eksponent 28 ${3}^{{2}^{2}}+1$ 3 raised to the 2 squared power, plus 1 3 verhef tot die 2 kwadraat mag, plus 1 29 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x squared plus 3 x cubed, end exponent 2 verhef tot die eksponent, x kwadraat plus 3 x tot die mag drie, end eksponent 30 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent 31 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent 32 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2 33 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 2 verhef tot die eksponent, x tot die vierde mag, end eksponent 34 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent 35 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent 36 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent 37 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1 38 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, squared, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, kwadraat, end eksponent 39 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent 40 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent 41 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent 42 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, squared, end exponent e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, kwadraat, end eksponent 44 ${2}^{n}$ 2 to the n-th power 2 tot die n-de mag 45 ${2}^{m}$ 2 to the m-th power 2 tot die m-de mag 46 ${2}^{i}$ 2 to the i-th power 2 tot die i-de mag 47 ${2}^{j}$ 2 to the j-th power 2 tot die j-de mag 48 ${2}^{a}$ 2 to the a-th power 2 tot die a-de mag

## Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_Ordinal.

 0 ${3}^{2}$ 3 to the second 3 tot die tweede 1 ${3}^{3}$ 3 to the third 3 tot die derde 2 ${3}^{0}$ 3 to the zero 3 tot die nul 3 ${3}^{1}$ 3 to the first 3 tot die eerste 4 ${3}^{5}$ 3 to the fifth 3 tot die vyfde 5 ${4}^{3.0}$ 4 raised to the 3.0 power 4 verhef tot die 3,0 mag 6 ${4}^{11}$ 4 to the eleventh 4 tot die elfde 7 ${3}^{-2}$ 3 to the negative 2 3 tot die negatiewe 2 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 verhef tot die negatiewe 2,0 mag 9 ${4}^{x}$ 4 to the x-th 4 tot die x-de 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 verhef tot die y plus 2 mag 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag 12 ${p}_{1}{}^{2}$ p sub 1, to the second p onderskrif 1, tot die tweede 13 ${p}_{1}{}^{3}$ p sub 1, to the third p onderskrif 1, tot die derde 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth p onderskrif 1, tot die vierde 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth p onderskrif 1, tot die tiende 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power p onderskrif 1, verhef tot die x plus 1 mag 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second p onderskrif, x onderskrif 1, tot die tweede 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third p onderskrif, x onderskrif 1, tot die derde 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth p onderskrif, x onderskrif 1, tot die vierde 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth p onderskrif, x onderskrif 1, tot die tiende 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second, end exponent 3 verhef tot die eksponent, 2 tot die tweede, end eksponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second, end exponent 3 verhef tot die eksponent, 2 x tot die tweede, end eksponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third, end exponent 5 verhef tot die eksponent, 2 tot die derde, end eksponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third, end exponent 5 verhef tot die eksponent, 2 x tot die derde, end eksponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second, plus 1, end exponent 3 verhef tot die eksponent, 2 tot die tweede, plus 1, end eksponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second, end exponent, plus 1 3 verhef tot die eksponent, 2 tot die tweede, end eksponent, plus 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second, plus 3 x to the third, end exponent 2 verhef tot die eksponent, x tot die tweede, plus 3 x tot die derde, end eksponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth, end exponent 3 verhef tot die eksponent, 3 tot die vierde, end eksponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth, plus 2, end exponent 3 verhef tot die eksponent, 3 tot die vierde, plus 2, end eksponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth, end exponent, plus 2 3 verhef tot die eksponent, 3 tot die vierde, end eksponent, plus 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth, end exponent 2 verhef tot die eksponent, x tot die vierde, end eksponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth, end exponent 3 verhef tot die eksponent, 3 tot die tiende, end eksponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth, plus 1, end exponent 3 verhef tot die eksponent, 3 tot die tiende, plus 1, end eksponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth, end exponent, plus 1 3 verhef tot die eksponent, 3 tot die tiende, end eksponent, plus 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede, end eksponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende, end eksponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, plus 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, plus 2, end eksponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th, end exponent, plus 2 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de, end eksponent, plus 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second, end exponent e verhef tot die eksponent, negatiewe een helfte x tot die tweede, end eksponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second, end exponent e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede, end eksponent

## Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_OrdinalPower.

 0 ${3}^{2}$ 3 to the second power 3 tot die tweede mag 1 ${3}^{3}$ 3 to the third power 3 tot die derde mag 2 ${3}^{0}$ 3 to the zero power 3 tot die nul mag 3 ${3}^{1}$ 3 to the first power 3 tot die eerste mag 4 ${3}^{5}$ 3 to the fifth power 3 tot die vyfde mag 5 ${3}^{5.0}$ 3 raised to the 5.0 power 3 verhef tot die 5,0 mag 6 ${4}^{11}$ 4 to the eleventh power 4 tot die elfde mag 7 ${3}^{-2}$ 3 to the negative 2 power 3 tot die negatiewe 2 mag 8 ${3}^{-2.0}$ 3 raised to the negative 2.0 power 3 verhef tot die negatiewe 2,0 mag 9 ${4}^{x}$ 4 to the x-th power 4 tot die x-de mag 10 ${3}^{y+2}$ 3 raised to the y plus 2 power 3 verhef tot die y plus 2 mag 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the 3 z, plus 8 power links hakkie, 2 y, minus 3, regs hakkie, verhef tot die 3 z, plus 8 mag 12 ${p}_{1}{}^{2}$ p sub 1, to the second power p onderskrif 1, tot die tweede mag 13 ${p}_{1}{}^{3}$ p sub 1, to the third power p onderskrif 1, tot die derde mag 14 ${p}_{1}{}^{4}$ p sub 1, to the fourth power p onderskrif 1, tot die vierde mag 15 ${p}_{1}{}^{10}$ p sub 1, to the tenth power p onderskrif 1, tot die tiende mag 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the x plus 1 power p onderskrif 1, verhef tot die x plus 1 mag 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, to the second power p onderskrif, x onderskrif 1, tot die tweede mag 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, to the third power p onderskrif, x onderskrif 1, tot die derde mag 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, to the fourth power p onderskrif, x onderskrif 1, tot die vierde mag 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, to the tenth power p onderskrif, x onderskrif 1, tot die tiende mag 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the y plus 1 power p onderskrif, x onderskrif 1, verhef tot die y plus 1 mag 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 to the second power, end exponent 3 verhef tot die eksponent, 2 tot die tweede mag, end eksponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x to the second power, end exponent 3 verhef tot die eksponent, 2 x tot die tweede mag, end eksponent 24 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 to the third power, end exponent 5 verhef tot die eksponent, 2 tot die derde mag, end eksponent 25 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x to the third power, end exponent 5 verhef tot die eksponent, 2 x tot die derde mag, end eksponent 26 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 to the second power, plus 1, end exponent 3 verhef tot die eksponent, 2 tot die tweede mag, plus 1, end eksponent 27 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 to the second power, end exponent, plus 1 3 verhef tot die eksponent, 2 tot die tweede mag, end eksponent, plus 1 28 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x to the second power, plus 3 x to the third power, end exponent 2 verhef tot die eksponent, x tot die tweede mag, plus 3 x tot die derde mag, end eksponent 29 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 to the fourth power, end exponent 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent 30 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 to the fourth power, plus 2, end exponent 3 verhef tot die eksponent, 3 tot die vierde mag, plus 2, end eksponent 31 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 to the fourth power, end exponent, plus 2 3 verhef tot die eksponent, 3 tot die vierde mag, end eksponent, plus 2 32 ${2}^{{x}^{4}}$ 2 raised to the exponent, x to the fourth power, end exponent 2 verhef tot die eksponent, x tot die vierde mag, end eksponent 33 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the x plus 3 power, end exponent 2 verhef tot die eksponent, 10 verhef tot die x plus 3 mag, end eksponent 34 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 to the tenth power, end exponent 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent 35 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 to the tenth power, plus 1, end exponent 3 verhef tot die eksponent, 3 tot die tiende mag, plus 1, end eksponent 36 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 to the tenth power, end exponent, plus 1 3 verhef tot die eksponent, 3 tot die tiende mag, end eksponent, plus 1 37 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the second power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tweede mag, end eksponent 38 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the tenth power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die tiende mag, end eksponent 39 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the y plus 2 power, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die y plus 2 mag, end eksponent 40 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, plus 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, plus 2, end eksponent 41 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, to the y-th power, end exponent, plus 2 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, tot die y-de mag, end eksponent, plus 2 42 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x to the second power, end exponent e verhef tot die eksponent, negatiewe een helfte x tot die tweede mag, end eksponent 43 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, to the second power, end exponent e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, tot die tweede mag, end eksponent

## Afrikaans Clearspeak Exponents rule tests. Locale: af, Style: Exponent_AfterPower.

 0 ${3}^{2}$ 3 raised to the power 2 3 verhef tot die mag 2 1 ${3}^{3}$ 3 raised to the power 3 3 verhef tot die mag 3 2 ${3}^{1}$ 3 raised to the power 1 3 verhef tot die mag 1 3 ${3}^{0}$ 3 raised to the power 0 3 verhef tot die mag 0 4 ${3}^{5}$ 3 raised to the power 5 3 verhef tot die mag 5 5 ${3}^{5.0}$ 3 raised to the power 5.0 3 verhef tot die mag 5,0 6 ${4}^{11}$ 4 raised to the power 11 4 verhef tot die mag 11 7 ${3}^{-2}$ 3 raised to the power negative 2 3 verhef tot die mag negatiewe 2 8 ${3}^{-2.0}$ 3 raised to the power negative 2.0 3 verhef tot die mag negatiewe 2,0 9 ${4}^{x}$ 4 raised to the power x 4 verhef tot die mag x 10 ${3}^{y+2}$ 3 raised to the power y plus 2 3 verhef tot die mag y plus 2 11 ${\left(2y-3\right)}^{3z+8}$ open paren, 2 y, minus 3, close paren, raised to the power 3 z plus 8 links hakkie, 2 y, minus 3, regs hakkie, verhef tot die mag 3 z plus 8 12 ${p}_{1}{}^{2}$ p sub 1, raised to the power 2 p onderskrif 1, verhef tot die mag 2 13 ${p}_{1}{}^{3}$ p sub 1, raised to the power 3 p onderskrif 1, verhef tot die mag 3 14 ${p}_{1}{}^{4}$ p sub 1, raised to the power 4 p onderskrif 1, verhef tot die mag 4 15 ${p}_{1}{}^{10}$ p sub 1, raised to the power 10 p onderskrif 1, verhef tot die mag 10 16 ${p}_{1}{}^{x+1}$ p sub 1, raised to the power x plus 1 p onderskrif 1, verhef tot die mag x plus 1 17 ${p}_{{x}_{1}}{}^{2}$ p sub, x sub 1, raised to the power 2 p onderskrif, x onderskrif 1, verhef tot die mag 2 18 ${p}_{{x}_{1}}{}^{3}$ p sub, x sub 1, raised to the power 3 p onderskrif, x onderskrif 1, verhef tot die mag 3 19 ${p}_{{x}_{1}}{}^{4}$ p sub, x sub 1, raised to the power 4 p onderskrif, x onderskrif 1, verhef tot die mag 4 20 ${p}_{{x}_{1}}{}^{10}$ p sub, x sub 1, raised to the power 10 p onderskrif, x onderskrif 1, verhef tot die mag 10 21 ${p}_{{x}_{1}}{}^{y+1}$ p sub, x sub 1, raised to the power y plus 1 p onderskrif, x onderskrif 1, verhef tot die mag y plus 1 22 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent 23 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent 24 ${3}^{{2}^{2}}$ 3 raised to the exponent, 2 raised to the power 2, end exponent 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent 25 ${3}^{2{x}^{2}}$ 3 raised to the exponent, 2 x raised to the power 2, end exponent 3 verhef tot die eksponent, 2 x verhef tot die mag 2, end eksponent 26 ${5}^{{2}^{3}}$ 5 raised to the exponent, 2 raised to the power 3, end exponent 5 verhef tot die eksponent, 2 verhef tot die mag 3, end eksponent 27 ${5}^{2{x}^{3}}$ 5 raised to the exponent, 2 x raised to the power 3, end exponent 5 verhef tot die eksponent, 2 x verhef tot die mag 3, end eksponent 28 ${3}^{{2}^{2}+1}$ 3 raised to the exponent, 2 raised to the power 2, plus 1, end exponent 3 verhef tot die eksponent, 2 verhef tot die mag 2, plus 1, end eksponent 29 ${3}^{{2}^{2}}+1$ 3 raised to the exponent, 2 raised to the power 2, end exponent, plus 1 3 verhef tot die eksponent, 2 verhef tot die mag 2, end eksponent, plus 1 30 ${2}^{{x}^{2}+3{x}^{3}}$ 2 raised to the exponent, x raised to the power 2, plus 3 x raised to the power 3, end exponent 2 verhef tot die eksponent, x verhef tot die mag 2, plus 3 x verhef tot die mag 3, end eksponent 31 ${3}^{{3}^{4}}$ 3 raised to the exponent, 3 raised to the power 4, end exponent 3 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent 32 ${3}^{{3}^{4}+2}$ 3 raised to the exponent, 3 raised to the power 4, plus 2, end exponent 3 verhef tot die eksponent, 3 verhef tot die mag 4, plus 2, end eksponent 33 ${3}^{{3}^{4}}+2$ 3 raised to the exponent, 3 raised to the power 4, end exponent, plus 2 3 verhef tot die eksponent, 3 verhef tot die mag 4, end eksponent, plus 2 34 ${2}^{{x}^{4}}$ 2 raised to the exponent, x raised to the power 4, end exponent 2 verhef tot die eksponent, x verhef tot die mag 4, end eksponent 35 ${2}^{{10}^{x+3}}$ 2 raised to the exponent, 10 raised to the power x plus 3, end exponent 2 verhef tot die eksponent, 10 verhef tot die mag x plus 3, end eksponent 36 ${3}^{{3}^{10}}$ 3 raised to the exponent, 3 raised to the power 10, end exponent 3 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent 37 ${3}^{{3}^{10}+1}$ 3 raised to the exponent, 3 raised to the power 10, plus 1, end exponent 3 verhef tot die eksponent, 3 verhef tot die mag 10, plus 1, end eksponent 38 ${3}^{{3}^{10}}+1$ 3 raised to the exponent, 3 raised to the power 10, end exponent, plus 1 3 verhef tot die eksponent, 3 verhef tot die mag 10, end eksponent, plus 1 39 ${3}^{{\left(x+1\right)}^{2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 2, end eksponent 40 ${3}^{{\left(x+1\right)}^{10}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power 10, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag 10, end eksponent 41 ${3}^{{\left(x+1\right)}^{y+2}}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y plus 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y plus 2, end eksponent 42 ${3}^{{\left(x+1\right)}^{y}+2}$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, plus 2, end exponent 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, plus 2, end eksponent 43 ${3}^{{\left(x+1\right)}^{y}}+2$ 3 raised to the exponent, open paren, x plus 1, close paren, raised to the power y, end exponent, plus 2 3 verhef tot die eksponent, links hakkie, x plus 1, regs hakkie, verhef tot die mag y, end eksponent, plus 2 44 ${e}^{-\frac{1}{2}{x}^{2}}$ e raised to the exponent, negative one half x raised to the power 2, end exponent e verhef tot die eksponent, negatiewe een helfte x verhef tot die mag 2, end eksponent 45 ${e}^{-\frac{1}{2}{\left(\frac{x-\mu }{\sigma }\right)}^{2}}$ e raised to the exponent, negative one half times, open paren, the fraction with numerator x minus mu, and denominator sigma, close paren, raised to the power 2, end exponent e verhef tot die eksponent, negatiewe een helfte maal, links hakkie, die breuk met teller x minus my, en noemer sigma, regs hakkie, verhef tot die mag 2, end eksponent

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Auto.

 0 $\frac{1}{2}$ one half een helfte 1 $\frac{12}{32}$ 12 over 32 12 oor 32 2 $\frac{x}{y}$ x over y x oor y 3 $\frac{2x}{3y}$ 2 x over 3 y 2 x oor 3 y 4 $\frac{xy}{cd}$ x y over c d x y oor c d 5 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third een helfte oor een derde 6 $\frac{-x}{y}$ negative x over y negatiewe x oor y 7 $\frac{-2x}{3y}$ negative 2 x over 3 y negatiewe 2 x oor 3 y 8 $\frac{xy}{-cd}$ x y over negative c d x y oor negatiewe c d 9 $\frac{\frac{1}{2}}{-\frac{1}{3}}$ one half over negative one third een helfte oor negatiewe een derde 10 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 die breuk met teller 2 plus 3, en noemer 13 11 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 die breuk met teller x plus y, en noemer 2 12 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y die breuk met teller x plus y, en noemer x minus y 13 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds die breuk met teller x plus y, en noemer x minus y, plus twee derdes 14 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles oor gallon 15 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles oor 3 gallons 16 $\frac{2\text{}\text{miles}}{3\text{}\text{gallons}}$ 2 miles over 3 gallons 2 miles oor 3 gallons 17 $\frac{\text{rise}}{\text{run}}$ rise over run rise oor run 18 $\frac{\text{successful outcomes}}{\text{total outcomes}}$ successful outcomes over total outcomes successful outcomes oor total outcomes 19 $\frac{6\text{ways of rolling a 7}}{36\text{ways of rolling the pair of dice}}$ 6 ways of rolling a 7 over 36 ways of rolling the pair of dice 6 ways of rolling a 7 oor 36 ways of rolling the pair of dice 20 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third een helfte oor een derde 21 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third die breuk met teller 1, en noemer, 2 oor een derde 22 $\frac{\frac{1}{2}}{3}$ one half over 3 een helfte oor 3 23 $\frac{1}{\frac{2}{3}}$ 1 over two thirds 1 oor twee derdes 24 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51 die breuk met teller, 11 oor 32, en noemer, 16 oor 51 25 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51 die breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51 26 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2 die breuk met teller 1 plus, 4 oor x, en noemer 2 27 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x die breuk met teller 3, en noemer 2 plus, 4 oor x 28 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half die breuk met teller, 10 oor 22, en noemer een helfte 29 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds die breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes 30 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2 die breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2 31 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1 die breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1 32 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16 die breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16 33 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x 1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x 34 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3 1 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3 35 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1 36 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses 37 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot a onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses 38 $\frac{f\left(x\right)}{g\left(x\right)}$ f of x, over g of x f van x, oor g van x 39 $\frac{f\left(x\right)+g\left(x\right)}{g\left(x\right)}$ the fraction with numerator f of x, plus g of x, and denominator g of x die breuk met teller f van x, plus g van x, en noemer g van x 40 $\frac{f\left(x+1\right)}{g\left(x\right)}$ the fraction with numerator f of, open paren, x plus 1, close paren, and denominator g of x die breuk met teller f van, links hakkie, x plus 1, regs hakkie, en noemer g van x 41 $\frac{f\left(x\right)}{2}$ f of x, over 2 f van x, oor 2 42 $\frac{2}{f\left(x\right)}$ 2 over f of x 2 oor f van x 43 $\frac{2}{g\left(x\right)+g\left(x+1\right)}$ the fraction with numerator 2, and denominator g of x, plus g of, open paren, x plus 1, close paren die breuk met teller 2, en noemer g van x, plus g van, links hakkie, x plus 1, regs hakkie 44 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x sinus x oor kosinus x 45 $\frac{\mathrm{sin}x+\mathrm{cos}x}{\mathrm{cos}x}$ the fraction with numerator sine x plus cosine x, and denominator cosine x die breuk met teller sinus x plus kosinus x, en noemer kosinus x 46 $\frac{\mathrm{sin}2x}{\mathrm{cos}3x}$ sine 2 x over cosine 3 x sinus 2 x oor kosinus 3 x 47 $\frac{\mathrm{sin}\left(x+y\right)}{\mathrm{cos}\left(x+y\right)}$ the fraction with numerator, the sine of, open paren, x plus y, close paren, and denominator, the cosine of, open paren, x plus y, close paren die breuk met teller, die sinus van, links hakkie, x plus y, regs hakkie, en noemer, die kosinus van, links hakkie, x plus y, regs hakkie 48 $\frac{f\left(2x\right)}{g\left(3x\right)}$ f of 2 x, over g of 3 x f van 2 x, oor g van 3 x 49 $\frac{\mathrm{log}x}{\mathrm{log}y}$ log x over log y logaritme x oor logaritme y 50 $\frac{\mathrm{log}2x}{\mathrm{log}3y}$ log 2 x over log 3 y logaritme 2 x oor logaritme 3 y 51 $\frac{{\mathrm{log}}_{10}x}{{\mathrm{log}}_{5}y}$ the log base 10 of, x, over, the log base 5 of, y die logaritme basis 10 van, x, oor, die logaritme basis 5 van, y 52 $\frac{{\mathrm{log}}_{10}2x}{{\mathrm{log}}_{5}3y}$ the log base 10 of, 2 x, over, the log base 5 of, 3 y die logaritme basis 10 van, 2 x, oor, die logaritme basis 5 van, 3 y 53 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}y}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator log y die breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer logaritme y 54 $\frac{{f}_{1}\left(x\right)}{{g}_{1}\left(x\right)}$ f sub 1, of x, over, g sub 1, of x f onderskrif 1, van x, oor, g onderskrif 1, van x

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Over.

 0 $\frac{1}{2}$ 1 over 2 1 oor 2 1 $\frac{12}{32}$ 12 over 32 12 oor 32 2 $\frac{2+3}{13}$ 2 plus 3 over 13 2 plus 3 oor 13 3 $\frac{x+y}{2}$ x plus y over 2 x plus y oor 2 4 $\frac{x+y}{x-y}$ x plus y over x minus y x plus y oor x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, plus, 2 over 3 x plus y oor x minus y, plus, 2 oor 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles oor gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles oor 3 gallons

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_OverEndFrac.

 0 $\frac{1}{2}$ 1 over 2, end fraction 1 oor 2, end breuk 1 $\frac{12}{32}$ 12 over 32, end fraction 12 oor 32, end breuk 2 $\frac{2+3}{13}$ 2 plus 3 over 13, end fraction 2 plus 3 oor 13, end breuk 3 $\frac{x+y}{2}$ x plus y over 2, end fraction x plus y oor 2, end breuk 4 $\frac{x+y}{x-y}$ x plus y over x minus y, end fraction x plus y oor x minus y, end breuk 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y over x minus y, end fraction, plus, 2 over 3, end fraction x plus y oor x minus y, end breuk, plus, 2 oor 3, end breuk 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons, end fraction miles oor gallons, end breuk 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons, end fraction 2 miles oor 3 gallons, end breuk

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_GeneralEndFrac.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2, end fraction die breuk met teller 1, en noemer 2, end breuk 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32, end fraction die breuk met teller 12, en noemer 32, end breuk 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction die breuk met teller 2 plus 3, en noemer 13, end breuk 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction die breuk met teller x plus y, en noemer 2, end breuk 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction die breuk met teller x plus y, en noemer x minus y, end breuk 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus, the fraction with numerator 2, and denominator 3, end fraction die breuk met teller x plus y, en noemer x minus y, end breuk, plus, die breuk met teller 2, en noemer 3, end breuk 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon, end fraction die breuk met teller miles, en noemer gallon, end breuk

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_General.

 0 $\frac{1}{2}$ the fraction with numerator 1, and denominator 2 die breuk met teller 1, en noemer 2 1 $\frac{12}{32}$ the fraction with numerator 12, and denominator 32 die breuk met teller 12, en noemer 32 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 die breuk met teller 2 plus 3, en noemer 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 die breuk met teller x plus y, en noemer 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y die breuk met teller x plus y, en noemer x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus, the fraction with numerator 2, and denominator 3 die breuk met teller x plus y, en noemer x minus y, plus, die breuk met teller 2, en noemer 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction with numerator miles, and denominator gallon die breuk met teller miles, en noemer gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction with numerator 2 miles, and denominator 3 gallons die breuk met teller 2 miles, en noemer 3 gallons

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_FracOver.

 0 $\frac{1}{2}$ the fraction 1 over 2 die breuk 1 oor 2 1 $\frac{12}{32}$ the fraction 12 over 32 die breuk 12 oor 32 2 $\frac{2+3}{13}$ the fraction 2 plus 3 over 13 die breuk 2 plus 3 oor 13 3 $\frac{x+y}{2}$ the fraction x plus y over 2 die breuk x plus y oor 2 4 $\frac{x+y}{x-y}$ the fraction x plus y over x minus y die breuk x plus y oor x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction x plus y over x minus y, plus, the fraction 2 over 3 die breuk x plus y oor x minus y, plus, die breuk 2 oor 3 6 $\frac{\text{miles}}{\text{gallon}}$ the fraction miles over gallon die breuk miles oor gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ the fraction 2 miles over 3 gallons die breuk 2 miles oor 3 gallons

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Per.

 0 $\frac{1}{2}$ 1 per 2 1 per 2 1 $\frac{12}{32}$ 12 per 32 12 per 32 2 $\frac{2+3}{13}$ 2 plus 3 per 13 2 plus 3 per 13 3 $\frac{x+y}{2}$ x plus y per 2 x plus y per 2 4 $\frac{x+y}{x-y}$ x plus y per x minus y x plus y per x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ x plus y per x minus y, plus, 2 per 3 x plus y per x minus y, plus, 2 per 3 6 $\frac{\text{miles}}{\text{gallon}}$ miles per gallon miles per gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles per 3 gallons 2 miles per 3 gallons

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_Ordinal.

 0 $\frac{1}{2}$ one half een helfte 1 $\frac{12}{32}$ twelve thirty seconds twaalf twee-en-dertigstes 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13 die breuk met teller 2 plus 3, en noemer 13 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2 die breuk met teller x plus y, en noemer 2 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y die breuk met teller x plus y, en noemer x minus y 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, plus two thirds die breuk met teller x plus y, en noemer x minus y, plus twee derdes 6 $\frac{\text{miles}}{\text{gallon}}$ miles over gallon miles oor gallon 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles oor 3 gallons

## Afrikaans Clearspeak Fractions rule tests. Locale: af, Style: Fraction_EndFrac.

 0 $\frac{1}{2}$ one half een helfte 1 $\frac{12}{32}$ 12 over 32, end fraction 12 oor 32, end breuk 2 $\frac{2+3}{13}$ the fraction with numerator 2 plus 3, and denominator 13, end fraction die breuk met teller 2 plus 3, en noemer 13, end breuk 3 $\frac{x+y}{2}$ the fraction with numerator x plus y, and denominator 2, end fraction die breuk met teller x plus y, en noemer 2, end breuk 4 $\frac{x+y}{x-y}$ the fraction with numerator x plus y, and denominator x minus y, end fraction die breuk met teller x plus y, en noemer x minus y, end breuk 5 $\frac{x+y}{x-y}+\frac{2}{3}$ the fraction with numerator x plus y, and denominator x minus y, end fraction, plus two thirds die breuk met teller x plus y, en noemer x minus y, end breuk, plus twee derdes 6 $\frac{\text{miles}}{\text{gallons}}$ miles over gallons miles oor gallons 7 $\frac{2\text{miles}}{3\text{gallons}}$ 2 miles over 3 gallons 2 miles oor 3 gallons 8 $\frac{\frac{1}{2}}{\frac{1}{3}}$ one half over one third een helfte oor een derde 9 $\frac{1}{\frac{2}{\frac{1}{3}}}$ the fraction with numerator 1, and denominator, 2 over one third, end fraction die breuk met teller 1, en noemer, 2 oor een derde, end breuk 10 $\frac{\frac{1}{2}}{3}$ one half over 3, end fraction een helfte oor 3, end breuk 11 $\frac{1}{\frac{2}{3}}$ 1 over two thirds, end fraction 1 oor twee derdes, end breuk 12 $\frac{\frac{11}{32}}{\frac{16}{51}}$ the fraction with numerator, 11 over 32, and denominator, 16 over 51, end fraction die breuk met teller, 11 oor 32, en noemer, 16 oor 51, end breuk 13 $\frac{11}{\frac{32}{\frac{16}{51}}}$ the fraction with numerator 11, and denominator, the fraction with numerator 32, and denominator, 16 over 51, end fraction die breuk met teller 11, en noemer, die breuk met teller 32, en noemer, 16 oor 51, end breuk 14 $\frac{1+\frac{4}{x}}{2}$ the fraction with numerator 1 plus, 4 over x, and denominator 2, end fraction die breuk met teller 1 plus, 4 oor x, en noemer 2, end breuk 15 $\frac{3}{2+\frac{4}{x}}$ the fraction with numerator 3, and denominator 2 plus, 4 over x, end fraction die breuk met teller 3, en noemer 2 plus, 4 oor x, end breuk 16 $\frac{\frac{10}{22}}{\frac{1}{2}}$ the fraction with numerator, 10 over 22, and denominator one half, end fraction die breuk met teller, 10 oor 22, en noemer een helfte, end breuk 17 $\frac{1+\frac{2}{3}}{1-\frac{2}{3}}$ the fraction with numerator 1 plus two thirds, and denominator 1 minus two thirds, end fraction die breuk met teller 1 plus twee derdes, en noemer 1 minus twee derdes, end breuk 18 $\frac{1+\frac{x}{2}}{1-\frac{x}{2}}$ the fraction with numerator 1 plus, x over 2, and denominator 1 minus, x over 2, end fraction die breuk met teller 1 plus, x oor 2, en noemer 1 minus, x oor 2, end breuk 19 $\frac{\frac{x+1}{x-1}+1}{x+1}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 1, plus 1, and denominator x plus 1, end fraction die breuk met teller, die breuk met teller x plus 1, en noemer x minus 1, plus 1, en noemer x plus 1, end breuk 20 $\frac{\frac{x+1}{x-4}+\frac{1}{2}}{x+\frac{1}{16}}$ the fraction with numerator, the fraction with numerator x plus 1, and denominator x minus 4, plus one half, and denominator x plus, 1 over 16, end fraction die breuk met teller, die breuk met teller x plus 1, en noemer x minus 4, plus een helfte, en noemer x plus, 1 oor 16, end breuk 21 $1+\frac{x}{1+\frac{2}{x}}$ 1 plus, the fraction with numerator x, and denominator 1 plus, 2 over x, end fraction 1 plus, die breuk met teller x, en noemer 1 plus, 2 oor x, end breuk 22 $1+\frac{x+3}{1+\frac{2}{x+3}}$ 1 plus, the fraction with numerator x plus 3, and denominator 1 plus, the fraction with numerator 2, and denominator x plus 3, end fraction 1 plus, die breuk met teller x plus 3, en noemer 1 plus, die breuk met teller 2, en noemer x plus 3, end breuk 23 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus 1, end fraction 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus 1, end breuk 24 $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots }}}$ 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus, the fraction with numerator 1, and denominator 1 plus dot dot dot, end fraction 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus, die breuk met teller 1, en noemer 1 plus middellyn horisontale elipses, end breuk 25 ${a}_{0}+\frac{1}{{a}_{1}+\frac{1}{{a}_{2}+\frac{1}{{a}_{3}+\cdots }}}$ a sub 0, plus, the fraction with numerator 1, and denominator, a sub 1, plus, the fraction with numerator 1, and denominator, a sub 2, plus, the fraction with numerator 1, and denominator, a sub 3, plus dot dot dot, end fraction a onderskrif 0, plus, die breuk met teller 1, en noemer, a onderskrif 1, plus, die breuk met teller 1, en noemer, a onderskrif 2, plus, die breuk met teller 1, en noemer, a onderskrif 3, plus middellyn horisontale elipses, end breuk

## Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Functions_Auto.

 0 $f\left(x\right)$ f of x f van x 1 $g\left(x\right)$ g of x g van x 2 $h\left(x\right)$ h of x h van x 3 $f\left(2x\right)$ f of 2 x f van 2 x 4 $g\left(-2x\right)$ g of negative 2 x g van negatiewe 2 x 5 $h\left(\frac{1}{2}\right)$ h of one half h van een helfte 6 $f\left(x+1\right)=f\left(x\right)+1$ f of, open paren, x plus 1, close paren, equals f of x, plus 1 f van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van x, plus 1 7 $g\left(2x+1\right)$ g of, open paren, 2 x, plus 1, close paren g van, links hakkie, 2 x, plus 1, regs hakkie 8 $g\left({x}^{2}\right)$ g of, open paren, x squared, close paren g van, links hakkie, x kwadraat, regs hakkie 9 ${f}^{-1}\left(x\right)$ f inverse of x f inverse van x 10 ${g}^{-1}\left(x\right)$ g inverse of x g inverse van x 11 ${h}^{-1}\left(x\right)$ h inverse of x h inverse van x 12 ${f}^{-1}\left(2x\right)$ f inverse of 2 x f inverse van 2 x 13 ${g}^{-1}\left(-2x\right)$ g inverse of negative 2 x g inverse van negatiewe 2 x 14 ${f}^{-1}\left(3x-1\right)$ f inverse of, open paren, 3 x, minus 1, close paren f inverse van, links hakkie, 3 x, minus 1, regs hakkie 15 ${g}^{-1}\left({x}^{2}\right)$ g inverse of, open paren, x squared, close paren g inverse van, links hakkie, x kwadraat, regs hakkie 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of one half h inverse van een helfte 17 ${f}^{-1}\left(f\left(x\right)\right)$ f inverse of, f of x f inverse van, f van x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g inverse of, g of x g inverse van, g van x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h inverse of, h of x h inverse van, h van x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f inverse of, f of 2 x f inverse van, f van 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g inverse of, g of negative 2 x g inverse van, g van negatiewe 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, h of one half h inverse van, h van een helfte 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f inverse of, open paren, f of, open paren, x plus 1, close paren, close paren, equals x plus 1 f inverse van, links hakkie, f van, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g inverse of, open paren, g of, open paren, 2 x, plus 1, close paren, close paren g inverse van, links hakkie, g van, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g inverse of, open paren, g of, open paren, x squared, close paren, close paren g inverse van, links hakkie, g van, links hakkie, x kwadraat, regs hakkie, regs hakkie 26 $f\left({f}^{-1}\left(x\right)\right)$ f of, f inverse of x f van, f inverse van x 27 $g\left({g}^{-1}\left(x\right)\right)$ g of, g inverse of x g van, g inverse van x 28 $h\left({h}^{-1}\left(x\right)\right)$ h of, h inverse of x h van, h inverse van x 29 $f\left({f}^{-1}\left(2x\right)\right)$ f of, f inverse of 2 x f van, f inverse van 2 x 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g of, g inverse of negative 2 x g van, g inverse van negatiewe 2 x 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f of, open paren, f inverse of, open paren, 3 x, minus 1, close paren, close paren f van, links hakkie, f inverse van, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g of, g inverse of, open paren, x squared, close paren g van, g inverse van, links hakkie, x kwadraat, regs hakkie 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of one half h van, h inverse van een helfte 34 $f\left(g\left(x\right)\right)$ f of, g of x f van, g van x 35 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren f van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie 36 $h\left(g\left(x\right)\right)$ h of, g of x h van, g van x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h of, open paren, g of, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren h van, links hakkie, g van, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, of x, equals f of x, plus g of x links hakkie, f plus g, regs hakkie, van x, is gelyk aan f van x, plus g van x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, of, open paren, x plus 1, close paren, equals f of, open paren, x plus 1, close paren, plus g of, open paren, x plus 1, close paren links hakkie, f plus g, regs hakkie, van, links hakkie, x plus 1, regs hakkie, is gelyk aan f van, links hakkie, x plus 1, regs hakkie, plus g van, links hakkie, x plus 1, regs hakkie 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, of x links hakkie, f punt g, regs hakkie, van x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, of, open paren, 2 x, plus 5, close paren links hakkie, f punt g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, of x, equals, f of x, over g of x links hakkie, f oor g, regs hakkie, van x, is gelyk aan, f van x, oor g van x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, of, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator f of, open paren, 2 x, plus 5, close paren, and denominator g of, open paren, 2 x, plus 5, close paren links hakkie, f oor g, regs hakkie, van, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller f van, links hakkie, 2 x, plus 5, regs hakkie, en noemer g van, links hakkie, 2 x, plus 5, regs hakkie 44 $\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, equals f of, g of x links hakkie, f ring g, regs hakkie, van x, is gelyk aan f van, g van x 45 $2f\left(x\right)$ 2 f of x 2 f van x 46 $cf\left(x\right)$ c f of x c f van x 47 ${f}^{2}\left(x\right)$ f squared of x f kwadraat van x 48 ${f}^{2}\left(2x+1\right)$ f squared of, open paren, 2 x, plus 1, close paren f kwadraat van, links hakkie, 2 x, plus 1, regs hakkie 49 ${f}^{3}\left(x\right)$ f cubed of x f tot die mag drie van x 50 ${f}^{3}\left(2x+1\right)$ f cubed of, open paren, 2 x, plus 1, close paren f tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie 51 ${f}^{4}\left(x\right)$ the fourth power of, f of x die vierde mag van, f van x 52 ${f}^{4}\left(2x+1\right)$ the fourth power of, f of, open paren, 2 x, plus 1, close paren die vierde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie 53 ${f}^{5}\left(x\right)$ the fifth power of, f of x die vyfde mag van, f van x 54 ${f}^{5}\left(2x+1\right)$ the fifth power of, f of, open paren, 2 x, plus 1, close paren die vyfde mag van, f van, links hakkie, 2 x, plus 1, regs hakkie 55 ${f}^{n}\left(x\right)$ the n-th power of, f of x die n-de mag van, f van x 56 ${f}^{n}\left(2x+1\right)$ the n-th power of, f of, open paren, 2 x, plus 1, close paren die n-de mag van, f van, links hakkie, 2 x, plus 1, regs hakkie 57 ${g}^{2}\left(x\right)$ g squared of x g kwadraat van x 58 ${g}^{2}\left(2x+1\right)$ g squared of, open paren, 2 x, plus 1, close paren g kwadraat van, links hakkie, 2 x, plus 1, regs hakkie 59 ${h}^{3}\left(x\right)$ h cubed of x h tot die mag drie van x 60 ${h}^{3}\left(2x+1\right)$ h cubed of, open paren, 2 x, plus 1, close paren h tot die mag drie van, links hakkie, 2 x, plus 1, regs hakkie 61 ${g}^{4}\left(x\right)$ the fourth power of, g of x die vierde mag van, g van x 62 ${g}^{4}\left(2x+1\right)$ the fourth power of, g of, open paren, 2 x, plus 1, close paren die vierde mag van, g van, links hakkie, 2 x, plus 1, regs hakkie 63 ${h}^{5}\left(x\right)$ the fifth power of, h of x die vyfde mag van, h van x 64 ${h}^{5}\left(2x+1\right)$ the fifth power of, h of, open paren, 2 x, plus 1, close paren die vyfde mag van, h van, links hakkie, 2 x, plus 1, regs hakkie 65 ${g}^{n}\left(x\right)$ the n-th power of, g of x die n-de mag van, g van x 66 ${g}^{n}\left(2x+1\right)$ the n-th power of, g of, open paren, 2 x, plus 1, close paren die n-de mag van, g van, links hakkie, 2 x, plus 1, regs hakkie 67 ${f}_{1}\left(x\right)$ f sub 1, of x f onderskrif 1, van x 68 ${g}_{2}\left({x}^{3}\right)$ g sub 2, of, open paren, x cubed, close paren g onderskrif 2, van, links hakkie, x tot die mag drie, regs hakkie 69 ${h}_{n}\left(3x-2\right)$ h sub n, of, open paren, 3 x, minus 2, close paren h onderskrif n, van, links hakkie, 3 x, minus 2, regs hakkie 70 ${f}_{1}^{-1}\left(x\right)$ f sub 1, inverse of x f onderskrif 1, inverse van x 71 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, inverse of, open paren, 2 x, plus 1, close paren g onderskrif 2, inverse van, links hakkie, 2 x, plus 1, regs hakkie 72 ${h}_{n}^{-1}\left(x\right)$ h sub n, inverse of x h onderskrif n, inverse van x 73 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, inverse of, g sub 2, of x g onderskrif 1, inverse van, g onderskrif 2, van x 74 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, of, g sub 2, inverse of x f onderskrif 1, van, g onderskrif 2, inverse van x 75 $f\left(x,y\right)$ f of, open paren, x comma y, close paren f van, links hakkie, x komma y, regs hakkie 76 $f\left(x,y,z\right)$ f of, open paren, x comma y comma z, close paren f van, links hakkie, x komma y komma z, regs hakkie 77 $f\left(x+1,2y\right)$ f of, open paren, x plus 1, comma, 2 y, close paren f van, links hakkie, x plus 1, komma, 2 y, regs hakkie 78 $f\left(2x,x+1,{x}^{2}\right)$ f of, open paren, 2 x, comma, x plus 1, comma, x squared, close paren f van, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie

## Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Fraction_Over.

 0 $h\left(\frac{1}{2}\right)$ h of, open paren, 1 over 2, close paren h van, links hakkie, 1 oor 2, regs hakkie 1 ${h}^{-1}\left(\frac{1}{2}\right)$ h inverse of, open paren, 1 over 2, close paren h inverse van, links hakkie, 1 oor 2, regs hakkie 2 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h inverse of, open paren, h of, open paren, 1 over 2, close paren, close paren h inverse van, links hakkie, h van, links hakkie, 1 oor 2, regs hakkie, regs hakkie

## Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Fraction_FracOver.

 0 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h of, h inverse of, open paren, the fraction 1 over 2, close paren h van, h inverse van, links hakkie, die breuk 1 oor 2, regs hakkie

## Afrikaans Clearspeak Functions rule tests. Locale: af, Style: Functions_None.

 0 $f\left(x\right)$ f times x f maal x 1 $g\left(x\right)$ g times x g maal x 2 $h\left(x\right)$ h times x h maal x 3 $f\left(2x\right)$ f times 2 x f maal 2 x 4 $g\left(-2x\right)$ g times negative 2 x g maal negatiewe 2 x 5 $h\left(\frac{1}{2}\right)$ h times one half h maal een helfte 6 $f\left(x+1\right)=f\left(x\right)+1$ f times, open paren, x plus 1, close paren, equals, f times x, plus 1 f maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal x, plus 1 7 $g\left(2x+1\right)$ g times, open paren, 2 x, plus 1, close paren g maal, links hakkie, 2 x, plus 1, regs hakkie 8 $g\left({x}^{2}\right)$ g times, open paren, x squared, close paren g maal, links hakkie, x kwadraat, regs hakkie 9 ${f}^{-1}\left(x\right)$ f to the negative 1 power, times x f tot die negatiewe 1 mag, maal x 10 ${g}^{-1}\left(x\right)$ g to the negative 1 power, times x g tot die negatiewe 1 mag, maal x 11 ${h}^{-1}\left(x\right)$ h to the negative 1 power, times x h tot die negatiewe 1 mag, maal x 12 ${f}^{-1}\left(2x\right)$ f to the negative 1 power, times 2 x f tot die negatiewe 1 mag, maal 2 x 13 ${g}^{-1}\left(-2x\right)$ g to the negative 1 power, times negative 2 x g tot die negatiewe 1 mag, maal negatiewe 2 x 14 ${f}^{-1}\left(3x-1\right)$ f to the negative 1 power, times, open paren, 3 x, minus 1, close paren f tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie 15 ${g}^{-1}\left({x}^{2}\right)$ g to the negative 1 power, times, open paren, x squared, close paren g tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie 16 ${h}^{-1}\left(\frac{1}{2}\right)$ h to the negative 1 power, times one half h tot die negatiewe 1 mag, maal een helfte 17 ${f}^{-1}\left(f\left(x\right)\right)$ f to the negative 1 power, times, f times x f tot die negatiewe 1 mag, maal, f maal x 18 ${g}^{-1}\left(g\left(x\right)\right)$ g to the negative 1 power, times, g times x g tot die negatiewe 1 mag, maal, g maal x 19 ${h}^{-1}\left(h\left(x\right)\right)$ h to the negative 1 power, times, h times x h tot die negatiewe 1 mag, maal, h maal x 20 ${f}^{-1}\left(f\left(2x\right)\right)$ f to the negative 1 power, times, f times 2 x f tot die negatiewe 1 mag, maal, f maal 2 x 21 ${g}^{-1}\left(g\left(-2x\right)\right)$ g to the negative 1 power, times, g times negative 2 x g tot die negatiewe 1 mag, maal, g maal negatiewe 2 x 22 ${h}^{-1}\left(h\left(\frac{1}{2}\right)\right)$ h to the negative 1 power, times, h times one half h tot die negatiewe 1 mag, maal, h maal een helfte 23 ${f}^{-1}\left(f\left(x+1\right)\right)=x+1$ f to the negative 1 power, times, open paren, f times, open paren, x plus 1, close paren, close paren, equals x plus 1 f tot die negatiewe 1 mag, maal, links hakkie, f maal, links hakkie, x plus 1, regs hakkie, regs hakkie, is gelyk aan x plus 1 24 ${g}^{-1}\left(g\left(2x+1\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, 2 x, plus 1, close paren, close paren g tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, 2 x, plus 1, regs hakkie, regs hakkie 25 ${g}^{-1}\left(g\left({x}^{2}\right)\right)$ g to the negative 1 power, times, open paren, g times, open paren, x squared, close paren, close paren g tot die negatiewe 1 mag, maal, links hakkie, g maal, links hakkie, x kwadraat, regs hakkie, regs hakkie 26 $f\left({f}^{-1}\left(x\right)\right)$ f times, open paren, f to the negative 1 power, times x, close paren f maal, links hakkie, f tot die negatiewe 1 mag, maal x, regs hakkie 27 $g\left({g}^{-1}\left(x\right)\right)$ g times, open paren, g to the negative 1 power, times x, close paren g maal, links hakkie, g tot die negatiewe 1 mag, maal x, regs hakkie 28 $h\left({h}^{-1}\left(x\right)\right)$ h times, open paren, h to the negative 1 power, times x, close paren h maal, links hakkie, h tot die negatiewe 1 mag, maal x, regs hakkie 29 $f\left({f}^{-1}\left(2x\right)\right)$ f times, open paren, f to the negative 1 power, times 2 x, close paren f maal, links hakkie, f tot die negatiewe 1 mag, maal 2 x, regs hakkie 30 $g\left({g}^{-1}\left(-2x\right)\right)$ g times, open paren, g to the negative 1 power, times negative 2 x, close paren g maal, links hakkie, g tot die negatiewe 1 mag, maal negatiewe 2 x, regs hakkie 31 $f\left({f}^{-1}\left(3x-1\right)\right)$ f times, open paren, f to the negative 1 power, times, open paren, 3 x, minus 1, close paren, close paren f maal, links hakkie, f tot die negatiewe 1 mag, maal, links hakkie, 3 x, minus 1, regs hakkie, regs hakkie 32 $g\left({g}^{-1}\left({x}^{2}\right)\right)$ g times, open paren, g to the negative 1 power, times, open paren, x squared, close paren, close paren g maal, links hakkie, g tot die negatiewe 1 mag, maal, links hakkie, x kwadraat, regs hakkie, regs hakkie 33 $h\left({h}^{-1}\left(\frac{1}{2}\right)\right)$ h times, open paren, h to the negative 1 power, times one half, close paren h maal, links hakkie, h tot die negatiewe 1 mag, maal een helfte, regs hakkie 34 $f\left(g\left(x\right)\right)$ f times, g times x f maal, g maal x 35 $f\left(g\left(x+1\right)\right)$ f times, open paren, g times, open paren, x plus 1, close paren, close paren f maal, links hakkie, g maal, links hakkie, x plus 1, regs hakkie, regs hakkie 36 $h\left(g\left(x\right)\right)$ h times, g times x h maal, g maal x 37 $h\left(g\left(\frac{x}{x+1}\right)\right)$ h times, open paren, g times, open paren, the fraction with numerator x, and denominator x plus 1, close paren, close paren h maal, links hakkie, g maal, links hakkie, die breuk met teller x, en noemer x plus 1, regs hakkie, regs hakkie 38 $\left(f+g\right)\left(x\right)=f\left(x\right)+g\left(x\right)$ open paren, f plus g, close paren, times x, equals, f times x, plus, g times x links hakkie, f plus g, regs hakkie, maal x, is gelyk aan, f maal x, plus, g maal x 39 $\left(f+g\right)\left(x+1\right)=f\left(x+1\right)+g\left(x+1\right)$ open paren, f plus g, close paren, times, open paren, x plus 1, close paren, equals, f times, open paren, x plus 1, close paren, plus, g times, open paren, x plus 1, close paren links hakkie, f plus g, regs hakkie, maal, links hakkie, x plus 1, regs hakkie, is gelyk aan, f maal, links hakkie, x plus 1, regs hakkie, plus, g maal, links hakkie, x plus 1, regs hakkie 40 $\left(f\cdot g\right)\left(x\right)$ open paren, f times g, close paren, times x links hakkie, f punt g, regs hakkie, maal x 41 $\left(f\cdot g\right)\left(2x+5\right)$ open paren, f times g, close paren, times, open paren, 2 x, plus 5, close paren links hakkie, f punt g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie 42 $\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}$ open paren, f over g, close paren, times x, equals, the fraction with numerator, f times x, and denominator, g times x links hakkie, f oor g, regs hakkie, maal x, is gelyk aan, die breuk met teller, f maal x, en noemer, g maal x 43 $\left(\frac{f}{g}\right)\left(2x+5\right)=\frac{f\left(2x+5\right)}{g\left(2x+5\right)}$ open paren, f over g, close paren, times, open paren, 2 x, plus 5, close paren, equals, the fraction with numerator, f times, open paren, 2 x, plus 5, close paren, and denominator, g times, open paren, 2 x, plus 5, close paren links hakkie, f oor g, regs hakkie, maal, links hakkie, 2 x, plus 5, regs hakkie, is gelyk aan, die breuk met teller, f maal, links hakkie, 2 x, plus 5, regs hakkie, en noemer, g maal, links hakkie, 2 x, plus 5, regs hakkie 44 $2f\left(x\right)$ 2, f times x 2, f maal x 45 $cf\left(x\right)$ c, f times x c, f maal x 46 ${f}^{2}\left(x\right)$ f squared times x f kwadraat maal x 47 ${f}^{2}\left(2x+1\right)$ f squared times, open paren, 2 x, plus 1, close paren f kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie 48 ${f}^{3}\left(x\right)$ f cubed times x f tot die mag drie maal x 49 ${f}^{3}\left(2x+1\right)$ f cubed times, open paren, 2 x, plus 1, close paren f tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie 50 ${f}^{4}\left(x\right)$ f to the fourth power, times x f tot die vierde mag, maal x 51 ${f}^{4}\left(2x+1\right)$ f to the fourth power, times, open paren, 2 x, plus 1, close paren f tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie 52 ${f}^{5}\left(x\right)$ f to the fifth power, times x f tot die vyfde mag, maal x 53 ${f}^{5}\left(2x+1\right)$ f to the fifth power, times, open paren, 2 x, plus 1, close paren f tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie 54 ${f}^{n}\left(x\right)$ f to the n-th power, times x f tot die n-de mag, maal x 55 ${f}^{n}\left(2x+1\right)$ f to the n-th power, times, open paren, 2 x, plus 1, close paren f tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie 56 ${g}^{2}\left(x\right)$ g squared times x g kwadraat maal x 57 ${g}^{2}\left(2x+1\right)$ g squared times, open paren, 2 x, plus 1, close paren g kwadraat maal, links hakkie, 2 x, plus 1, regs hakkie 58 ${h}^{3}\left(x\right)$ h cubed times x h tot die mag drie maal x 59 ${h}^{3}\left(2x+1\right)$ h cubed times, open paren, 2 x, plus 1, close paren h tot die mag drie maal, links hakkie, 2 x, plus 1, regs hakkie 60 ${g}^{4}\left(x\right)$ g to the fourth power, times x g tot die vierde mag, maal x 61 ${g}^{4}\left(2x+1\right)$ g to the fourth power, times, open paren, 2 x, plus 1, close paren g tot die vierde mag, maal, links hakkie, 2 x, plus 1, regs hakkie 62 ${h}^{5}\left(x\right)$ h to the fifth power, times x h tot die vyfde mag, maal x 63 ${h}^{5}\left(2x+1\right)$ h to the fifth power, times, open paren, 2 x, plus 1, close paren h tot die vyfde mag, maal, links hakkie, 2 x, plus 1, regs hakkie 64 ${g}^{n}\left(x\right)$ g to the n-th power, times x g tot die n-de mag, maal x 65 ${g}^{n}\left(2x+1\right)$ g to the n-th power, times, open paren, 2 x, plus 1, close paren g tot die n-de mag, maal, links hakkie, 2 x, plus 1, regs hakkie 66 ${f}_{1}\left(x\right)$ f sub 1, times x f onderskrif 1, maal x 67 ${g}_{2}\left({x}^{3}\right)$ g sub 2, times, open paren, x cubed, close paren g onderskrif 2, maal, links hakkie, x tot die mag drie, regs hakkie 68 ${h}_{n}\left(3x-2\right)$ h sub n, times, open paren, 3 x, minus 2, close paren h onderskrif n, maal, links hakkie, 3 x, minus 2, regs hakkie 69 ${f}_{1}^{-1}\left(x\right)$ f sub 1, to the negative 1 power, times x f onderskrif 1, tot die negatiewe 1 mag, maal x 70 ${g}_{2}^{-1}\left(2x+1\right)$ g sub 2, to the negative 1 power, times, open paren, 2 x, plus 1, close paren g onderskrif 2, tot die negatiewe 1 mag, maal, links hakkie, 2 x, plus 1, regs hakkie 71 ${h}_{n}^{-1}\left(x\right)$ h sub n, to the negative 1 power, times x h onderskrif n, tot die negatiewe 1 mag, maal x 72 ${g}_{1}^{-1}\left({g}_{2}\left(x\right)\right)$ g sub 1, to the negative 1 power, times, open paren, g sub 2, times x, close paren g onderskrif 1, tot die negatiewe 1 mag, maal, links hakkie, g onderskrif 2, maal x, regs hakkie 73 ${f}_{1}\left({g}_{2}^{-1}\left(x\right)\right)$ f sub 1, times, open paren, g sub 2, to the negative 1 power, times x, close paren f onderskrif 1, maal, links hakkie, g onderskrif 2, tot die negatiewe 1 mag, maal x, regs hakkie 74 $f\left(x,y\right)$ f times, open paren, x comma y, close paren f maal, links hakkie, x komma y, regs hakkie 75 $f\left(x,y,z\right)$ f times, open paren, x comma y comma z, close paren f maal, links hakkie, x komma y komma z, regs hakkie 76 $f\left(x+1,2y\right)$ f times, open paren, x plus 1, comma, 2 y, close paren f maal, links hakkie, x plus 1, komma, 2 y, regs hakkie 77 $f\left(2x,x+1,{x}^{2}\right)$ f times, open paren, 2 x, comma, x plus 1, comma, x squared, close paren f maal, links hakkie, 2 x, komma, x plus 1, komma, x kwadraat, regs hakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto.

 0 $2\left(3\right)$ 2 times 3 2 maal 3 1 $2\left[3\right]$ 2 times 3 2 maal 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 2 tot die vierde mag, maal 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 2 maal, links hakkie, 3 plus 4, regs hakkie 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 2 maal, links blokhakkie, 3 plus 4, regs blokhakkie 5 $\left(3\right)\left(2\right)$ 3 times 2 3 maal 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren links hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket links blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren x maal, links hakkie, y plus z, regs hakkie 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 2 maal, links hakkie, y plus 1, regs hakkie 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x links hakkie, 2 minus 1, regs hakkie, maal x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren p onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power p onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag 16 $xy$ x y x y 17 ${x}^{2}{y}^{3}$ x squared, y cubed x kwadraat, y tot die mag drie 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power x verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b die vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 21 $2\sqrt{3}$ 2 the square root of 3 2 die vierkantswortel van 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 1 plus 2 die vierkantswortel van 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren f van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y sinus x kosinus y, plus, kosinus x sinus y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, the cosine of, open paren, x plus y, close paren die sinus van, links hakkie, x plus y, regs hakkie, die kosinus van, links hakkie, x plus y, regs hakkie 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y die logaritme basis 10 van, x y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie 31 $2|x|$ 2 times, the absolute value of x 2 maal, die absolute waarde van x 32 $|x||y|$ the absolute value of x, times, the absolute value of y die absolute waarde van x, maal, die absolute waarde van y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1 die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1 35 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals h of, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren A is gelyk aan h van, links hakkie, die breuk met teller, b onderskrif 1, plus, b onderskrif 2, en noemer 2, regs hakkie 36 $a\left(0\right)=0\left(a\right)=0$ a of 0, equals 0 times a equals 0 a van 0, is gelyk aan 0 maal a is gelyk aan 0 37 $a\left(-1\right)=-a$ a of negative 1, equals negative a a van negatiewe 1, is gelyk aan negatiewe a 38 $B\left(2,6\right)$ B of, open paren, 2 comma 6, close paren B van, links hakkie, 2 komma 6, regs hakkie 39 $p\left(w\right)$ p of w p van w 40 $x\left(t\right)=2t+4$ x of t, equals 2 t, plus 4 x van t, is gelyk aan 2 t, plus 4 41 $k\left(x\right)=\left(x+3\right)\left(x-5\right)$ k of x, equals, open paren, x plus 3, close paren, times, open paren, x minus 5, close paren k van x, is gelyk aan, links hakkie, x plus 3, regs hakkie, maal, links hakkie, x minus 5, regs hakkie 42 $T\left(t\right)={T}_{s}+\left({T}_{0}-{T}_{s}\right){e}^{-kt}$ T of t, equals, T sub s, plus, open paren, T sub 0, minus, T sub s, close paren, times e raised to the negative k t, power T van t, is gelyk aan, T onderskrif s, plus, links hakkie, T onderskrif 0, minus, T onderskrif s, regs hakkie, maal e verhef tot die negatiewe k t, mag 43 $V=\mathcal{l}w\left(8\right)$ V equals script l, w of 8 V is gelyk aan skrif l, w van 8

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren f maal x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie 1 $A=h\left(\frac{{b}_{1}+{b}_{2}}{2}\right)$ A equals, h times, open paren, the fraction with numerator, b sub 1, plus, b sub 2, and denominator 2, close paren A is gelyk aan, h maal, links hakkie, die breuk met teller, b onderskrif 1, plus, b onderskrif 2, en noemer 2, regs hakkie 2 $a\left(0\right)=0\left(a\right)=0$ a times 0, equals 0 times a equals 0 a maal 0, is gelyk aan 0 maal a is gelyk aan 0 3 $a\left(-1\right)=-a$ a times negative 1, equals negative a a maal negatiewe 1, is gelyk aan negatiewe a 4 $B\left(2,6\right)$ B times, open paren, 2 comma 6, close paren B maal, links hakkie, 2 komma 6, regs hakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2 maal, links hakkie, 3 maal, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2 maal, links blokhakkie, 3 maal, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_Auto:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y minus 1, end absolute waarde van 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1 die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y, end absolute waarde van, minus 1

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes.

 0 $2\left(3\right)$ 2 times 3 2 maal 3 1 $2\left[3\right]$ 2 times 3 2 maal 3 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, times 3 2 tot die vierde mag, maal 3 3 $2\left(3+4\right)$ 2 times, open paren, 3 plus 4, close paren 2 maal, links hakkie, 3 plus 4, regs hakkie 4 $2\left[3+4\right]$ 2 times, open bracket, 3 plus 4, close bracket 2 maal, links blokhakkie, 3 plus 4, regs blokhakkie 5 $\left(3\right)\left(2\right)$ 3 times 2 3 maal 2 6 $2{\left(3+4\right)}^{2}$ 2 times, open paren, 3 plus 4, close paren, squared 2 maal, links hakkie, 3 plus 4, regs hakkie, kwadraat 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, times, open paren, 3 minus 6, close paren links hakkie, 2 plus 7, regs hakkie, maal, links hakkie, 3 minus 6, regs hakkie 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, times, open bracket, 3 minus 6, close bracket links blokhakkie, 2 plus 7, regs blokhakkie, maal, links blokhakkie, 3 minus 6, regs blokhakkie 9 $x\left(y+z\right)$ x times, open paren, y plus z, close paren x maal, links hakkie, y plus z, regs hakkie 10 $2\left(y+1\right)$ 2 times, open paren, y plus 1, close paren 2 maal, links hakkie, y plus 1, regs hakkie 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, times x links hakkie, 2 minus 1, regs hakkie, maal x 12 ${p}_{1}\left(3+7\right)$ p sub 1, times, open paren, 3 plus 7, close paren p onderskrif 1, maal, links hakkie, 3 plus 7, regs hakkie 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, times, p sub 2, raised to the, a sub 2, power p onderskrif 1, verhef tot die, a onderskrif 1, mag, maal, p onderskrif 2, verhef tot die, a onderskrif 2, mag 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, times, open paren, x minus y, close paren, to the negative 4 power links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, maal, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4 times, open paren, x plus y, close paren, power 2 verhef tot die 4 maal, links hakkie, x plus y, regs hakkie, mag 16 $xy$ x times y x maal y 17 ${x}^{2}{y}^{3}$ x squared times y cubed x kwadraat maal y tot die mag drie 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, times x raised to the y plus 2 power x verhef tot die y plus 1 mag, maal x verhef tot die y plus 2 mag 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, times the square root of b, equals the square root of a times b die vierkantswortel van a, maal die vierkantswortel van b, is gelyk aan die vierkantswortel van a maal b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, times the square root of 10, equals the square root of 30 die vierkantswortel van 3, maal die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 21 $2\sqrt{3}$ 2 times the square root of 3 2 maal die vierkantswortel van 3 22 $1+2\sqrt{3}$ 1 plus 2 times the square root of 3 1 plus 2 maal die vierkantswortel van 3 23 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared times, open paren, x plus 1, close paren f van x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie 24 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x, times cosine y plus cosine x, times sine y sinus x, maal kosinus y plus kosinus x, maal sinus y 25 $\mathrm{sin}\left(x+y\right)\mathrm{cos}\left(x+y\right)$ the sine of, open paren, x plus y, close paren, times, the cosine of, open paren, x plus y, close paren die sinus van, links hakkie, x plus y, regs hakkie, maal, die kosinus van, links hakkie, x plus y, regs hakkie 26 ${\mathrm{log}}_{10}xy$ the log base 10 of, x times y die logaritme basis 10 van, x maal y 27 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals log x, times log y die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan logaritme x, maal logaritme y 28 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. times the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. maal die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 29 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2 maal, links hakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie 30 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2 maal, links blokhakkie, 3 maal, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie 31 $2|x|$ 2 times, the absolute value of x 2 maal, die absolute waarde van x 32 $|x||y|$ the absolute value of x, times, the absolute value of y die absolute waarde van x, maal, die absolute waarde van y 33 $|x+1||y-1|$ the absolute value of x plus 1, times, the absolute value of y minus 1 die absolute waarde van x plus 1, maal, die absolute waarde van y minus 1 34 $|x+1||y|-1$ the absolute value of x plus 1, times, the absolute value of y, minus 1 die absolute waarde van x plus 1, maal, die absolute waarde van y, minus 1

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimesAnd:Functions_None.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f times x, equals x squared times, open paren, x plus 1, close paren f maal x, is gelyk aan x kwadraat maal, links hakkie, x plus 1, regs hakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2 times, open paren, 3 times, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2 maal, links hakkie, 3 maal, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2 times, open bracket, 3 times, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2 maal, links blokhakkie, 3 maal, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_MoreImpliedTimes:AbsoluteValue_AbsEnd.

 0 $|x+1||y-1|$ the absolute value of x plus 1, end absolute value, times, the absolute value of y minus 1, end absolute value die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y minus 1, end absolute waarde van 1 $|x+1||y|-1$ the absolute value of x plus 1, end absolute value, times, the absolute value of y, end absolute value, minus 1 die absolute waarde van x plus 1, end absolute waarde van, maal, die absolute waarde van y, end absolute waarde van, minus 1

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 2, links hakkie, 3, regs hakkie 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2, links blokhakkie, 3, regs blokhakkie 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 2 tot die vierde mag, links hakkie, 3, regs hakkie 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 2, links hakkie, 3 plus 4, regs hakkie 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 2, links blokhakkie, 3 plus 4, regs blokhakkie 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren links hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 2, links hakkie, 3 plus 4, regs hakkie, kwadraat 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren links hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket links blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren x, links hakkie, y plus z, regs hakkie 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 2, links hakkie, y plus 1, regs hakkie 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x links hakkie, 2 minus 1, regs hakkie, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren p onderskrif 1, links hakkie, 3 plus 7, regs hakkie 13 ${p}_{1}^{{a}_{1}}{p}_{2}^{{a}_{2}}$ p sub 1, raised to the, a sub 1, power, p sub 2, raised to the, a sub 2, power p onderskrif 1, verhef tot die, a onderskrif 1, mag, p onderskrif 2, verhef tot die, a onderskrif 2, mag 14 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag 15 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag 16 $xy$ x y x y 17 ${x}^{2}{y}^{3}$ x squared y cubed x kwadraat y tot die mag drie 18 ${x}^{y+1}{x}^{y+2}$ x raised to the y plus 1 power, x raised to the y plus 2 power x verhef tot die y plus 1 mag, x verhef tot die y plus 2 mag 19 $\sqrt{a}\sqrt{b}=\sqrt{ab}$ the square root of a, the square root of b, equals the square root of a b die vierkantswortel van a, die vierkantswortel van b, is gelyk aan die vierkantswortel van a b 20 $\sqrt{3}\sqrt{10}=\sqrt{30}$ the square root of 3, the square root of 10, equals the square root of 30 die vierkantswortel van 3, die vierkantswortel van 10, is gelyk aan die vierkantswortel van 30 21 $2\sqrt{3}$ 2 the square root of 3 2 die vierkantswortel van 3 22 $1+2\sqrt{3}$ 1 plus 2 the square root of 3 1 plus 2 die vierkantswortel van 3 23 $\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ sine x cosine y, plus, cosine x sine y sinus x kosinus y, plus, kosinus x sinus y 24 ${\mathrm{log}}_{10}xy$ the log base 10 of, x y die logaritme basis 10 van, x y 25 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y 26 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 27 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie 28 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie 29 $2|x|$ 2, the absolute value of x 2, die absolute waarde van x 30 $|x||y|$ the absolute value of x, the absolute value of y die absolute waarde van x, die absolute waarde van y 31 $|x+1||y-1|$ the absolute value of x plus 1, the absolute value of y minus 1 die absolute waarde van x plus 1, die absolute waarde van y minus 1 32 $|x+1||y|-1$ the absolute value of x plus 1, the absolute value of y, minus 1 die absolute waarde van x plus 1, die absolute waarde van y, minus 1 33 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren f van x, is gelyk aan x kwadraat, links hakkie, x plus 1, regs hakkie 34 $\mathrm{log}\left(x+y\right)=\mathrm{log}x\mathrm{log}y$ the log of, open paren, x plus y, close paren, equals, log x log y die logaritme van, links hakkie, x plus y, regs hakkie, is gelyk aan, logaritme x logaritme y

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Functions_Auto.

 0 $f\left(x\right)={x}^{2}\left(x+1\right)$ f of x, equals x squared, open paren, x plus 1, close paren f van x, is gelyk aan x kwadraat, links hakkie, x plus 1, regs hakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Paren_SpeakNestingLevel.

 0 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2, links hakkie, 3, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie 1 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2, links blokhakkie, 3, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie 2 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open second paren, open third paren, 4 plus 5, close third paren, plus 6, close second paren, close paren 2, links hakkie, 3, tweede links hakkie, derde links hakkie, 4 plus 5, derde regs hakkie, plus 6, tweede regs hakkie, regs hakkie 3 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open second paren, 4 plus 5, close second paren, plus 6, close paren, close bracket 2, links blokhakkie, 3, links hakkie, tweede links hakkie, 4 plus 5, tweede regs hakkie, plus 6, regs hakkie, regs blokhakkie

## Afrikaans Clearspeak ImpliedTimes rule tests. Locale: af, Style: ImpliedTimes_None:Paren_Silent.

 0 $2\left(3\right)$ 2, open paren, 3, close paren 2, links hakkie, 3, regs hakkie 1 $2\left[3\right]$ 2, open bracket, 3, close bracket 2, links blokhakkie, 3, regs blokhakkie 2 ${2}^{4}\left(3\right)$ 2 to the fourth power, open paren, 3, close paren 2 tot die vierde mag, links hakkie, 3, regs hakkie 3 $2\left(3+4\right)$ 2, open paren, 3 plus 4, close paren 2, links hakkie, 3 plus 4, regs hakkie 4 $2\left[3+4\right]$ 2, open bracket, 3 plus 4, close bracket 2, links blokhakkie, 3 plus 4, regs blokhakkie 5 $\left(3\right)\left(2\right)$ open paren, 3, close paren, open paren, 2, close paren links hakkie, 3, regs hakkie, links hakkie, 2, regs hakkie 6 $2{\left(3+4\right)}^{2}$ 2, open paren, 3 plus 4, close paren, squared 2, links hakkie, 3 plus 4, regs hakkie, kwadraat 7 $\left(2+7\right)\left(3-6\right)$ open paren, 2 plus 7, close paren, open paren, 3 minus 6, close paren links hakkie, 2 plus 7, regs hakkie, links hakkie, 3 minus 6, regs hakkie 8 $\left[2+7\right]\left[3-6\right]$ open bracket, 2 plus 7, close bracket, open bracket, 3 minus 6, close bracket links blokhakkie, 2 plus 7, regs blokhakkie, links blokhakkie, 3 minus 6, regs blokhakkie 9 $x\left(y+z\right)$ x, open paren, y plus z, close paren x, links hakkie, y plus z, regs hakkie 10 $2\left(y+1\right)$ 2, open paren, y plus 1, close paren 2, links hakkie, y plus 1, regs hakkie 11 $\left(2-1\right)x$ open paren, 2 minus 1, close paren, x links hakkie, 2 minus 1, regs hakkie, x 12 ${p}_{1}\left(3+7\right)$ p sub 1, open paren, 3 plus 7, close paren p onderskrif 1, links hakkie, 3 plus 7, regs hakkie 13 ${\left(x+y\right)}^{-4}{\left(x-y\right)}^{-4}$ open paren, x plus y, close paren, to the negative 4 power, open paren, x minus y, close paren, to the negative 4 power links hakkie, x plus y, regs hakkie, tot die negatiewe 4 mag, links hakkie, x minus y, regs hakkie, tot die negatiewe 4 mag 14 ${2}^{4\left(x+y\right)}$ 2 raised to the 4, open paren, x plus y, close paren, power 2 verhef tot die 4, links hakkie, x plus y, regs hakkie, mag 15 $\left(\begin{array}{cc}1& 3\\ 5& 2\end{array}\right)\left(\begin{array}{cc}7& 4\\ 0& 1\end{array}\right)$ the 2 by 2 matrix. Row 1: 1, 3 Row 2: 5, 2. the 2 by 2 matrix. Row 1: 7, 4 Row 2: 0, 1 die 2 by 2 matriks. Ry 1: 1, 3 Ry 2: 5, 2. die 2 by 2 matriks. Ry 1: 7, 4 Ry 2: 0, 1 16 $2\left(3\left(\left(4+5\right)+6\right)\right)$ 2, open paren, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close paren 2, links hakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs hakkie 17 $2\left[3\left(\left(4+5\right)+6\right)\right]$ 2, open bracket, 3, open paren, open paren, 4 plus 5, close paren, plus 6, close paren, close bracket 2, links blokhakkie, 3, links hakkie, links hakkie, 4 plus 5, regs hakkie, plus 6, regs hakkie, regs blokhakkie

## Afrikaans Clearspeak Logarithms rule tests. Locale: af, Style: Log_Auto.

 0 $\mathrm{log}x$ log x logaritme x 1 ${\mathrm{log}}_{10}x$ the log base 10 of, x die logaritme basis 10 van, x 2 ${\mathrm{log}}_{b}ax={\mathrm{log}}_{b}a+{\mathrm{log}}_{b}x$ the log base b of, a x, equals, the log base b of, a, plus, the log base b of, x die logaritme basis b van, a x, is gelyk aan, die logaritme basis b van, a, plus, die logaritme basis b van, x 3 ${\mathrm{log}}_{b}\frac{S}{T}={\mathrm{log}}_{b}S-{\mathrm{log}}_{b}T$ the log base b of, S over T, equals, the log base b of, S, minus, the log base b of, T die logaritme basis b van, S oor T, is gelyk aan, die logaritme basis b van, S, minus, die logaritme basis b van, T 4 ${\mathrm{log}}_{b}\left({x}^{k}\right)=k{\mathrm{log}}_{b}x$ the log base b of, open paren, x to the k-th power, close paren, equals k, the log base b of, x die logaritme basis b van, links hakkie, x tot die k-de mag, regs hakkie, is gelyk aan k, die logaritme basis b van, x 5 ${10}^{{\mathrm{log}}_{10}x}=x$ 10 raised to the log base 10 of, x, power, equals x 10 verhef tot die logaritme basis 10 van, x, mag, is gelyk aan x 6 ${\mathrm{log}}_{10}{10}^{x}=x$ the log base 10 of, 10 to the x-th power, equals x die logaritme basis 10 van, 10 tot die x-de mag, is gelyk aan x 7 ${10}^{{\mathrm{log}}_{10}5}=5$ 10 raised to the log base 10 of, 5, power, equals 5 10 verhef tot die logaritme basis 10 van, 5, mag, is gelyk aan 5 8 ${\mathrm{log}}_{10}{10}^{3}=3$ the log base 10 of, 10 cubed, equals 3 die logaritme basis 10 van, 10 tot die mag drie, is gelyk aan 3 9 ${\mathrm{log}}_{a}x=\frac{{\mathrm{log}}_{b}x}{{\mathrm{log}}_{b}a}$ the log base a of, x, equals, the log base b of, x, over, the log base b of, a die logaritme basis a van, x, is gelyk aan, die logaritme basis b van, x, oor, die logaritme basis b van, a 10 $\frac{{\mathrm{log}}_{10}18}{{\mathrm{log}}_{10}3}={\mathrm{log}}_{3}18$ the log base 10 of, 18, over, the log base 10 of, 3, equals, the log base 3 of, 18 die logaritme basis 10 van, 18, oor, die logaritme basis 10 van, 3, is gelyk aan, die logaritme basis 3 van, 18 11 $\frac{\mathrm{log}x}{\mathrm{log}a}$ log x over log a logaritme x oor logaritme a 12 $\mathrm{log}\left(x+1\right)$ the log of, open paren, x plus 1, close paren die logaritme van, links hakkie, x plus 1, regs hakkie 13 $\mathrm{log}{\left(x+1\right)}^{2}$ the log of, open paren, x plus 1, close paren, squared die logaritme van, links hakkie, x plus 1, regs hakkie, kwadraat 14 $\mathrm{log}\left(xy\right)$ log x y logaritme x y 15 $\frac{\mathrm{log}\left(x+1\right)}{\mathrm{log}\left(x+2\right)}$ the fraction with numerator, the log of, open paren, x plus 1, close paren, and denominator, the log of, open paren, x plus 2, close paren die breuk met teller, die logaritme van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme van, links hakkie, x plus 2, regs hakkie 16 $\frac{{\mathrm{log}}_{6}\left(x+1\right)}{{\mathrm{log}}_{6}\left(x+2\right)}$ the fraction with numerator, the log base 6 of, open paren, x plus 1, close paren, and denominator, the log base 6 of, open paren, x plus 2, close paren die breuk met teller, die logaritme basis 6 van, links hakkie, x plus 1, regs hakkie, en noemer, die logaritme basis 6 van, links hakkie, x plus 2, regs hakkie 17 $\frac{\mathrm{log}40+\mathrm{log}60}{\mathrm{log}5}$ the fraction with numerator log 40 plus log 60, and denominator log 5 die breuk met teller logaritme 40 plus logaritme 60, en noemer logaritme 5 18 $\frac{{\mathrm{log}}_{3}40+{\mathrm{log}}_{3}60}{{\mathrm{log}}_{3}5}$ the fraction with numerator, the log base 3 of, 40, plus, the log base 3 of, 60, and denominator, the log base 3 of, 5 die breuk met teller, die logaritme basis 3 van, 40, plus, die logaritme basis 3 van, 60, en noemer, die logaritme basis 3 van, 5 19 $\mathrm{log}\left({3}^{4}{12}^{9}\right)=4\mathrm{log}3+9\mathrm{log}12$ the log of, open paren, 3 to the fourth power, 12 to the ninth power, close paren, equals 4 log 3, plus 9 log 12 die logaritme van, links hakkie, 3 tot die vierde mag, 12 tot die negende mag, regs hakkie, is gelyk aan 4 logaritme 3, plus 9 logaritme 12 20 $\mathrm{log}\left(\frac{x}{y}\right)$ the log of, open paren, x over y, close paren die logaritme van, links hakkie, x oor y, regs hakkie 21 $\mathrm{log}\left(\frac{{3}^{4}}{{8}^{10}}\right)=4\mathrm{log}3-10\mathrm{log}8$ the log of, open paren, the fraction with numerator 3 to the fourth power, and denominator 8 to the tenth power, close paren, equals 4 log 3, minus 10 log 8 die logaritme van, links hakkie, die breuk met teller 3 tot die vierde mag, en noemer 8 tot die tiende mag, regs hakkie, is gelyk aan 4 logaritme 3, minus 10 logaritme 8 22 ${10}^{\mathrm{log}x}$ 10 raised to the log x power 10 verhef tot die logaritme x mag 23 $\mathrm{ln}x$ l n x l n x 24 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ l n x, minus l n of, open paren, x minus 1, close paren, equals l n of, open paren, the fraction with numerator x, and denominator x minus 1, close paren l n x, minus l n van, links hakkie, x minus 1, regs hakkie, is gelyk aan l n van, links hakkie, die breuk met teller x, en noemer x minus 1, regs hakkie 25 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x l n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x 26 ${e}^{\mathrm{ln}x}=x$ e raised to the l n x power, equals x e verhef tot die l n x mag, is gelyk aan x 27 $\mathrm{ln}\left({e}^{x}\right)=x$ l n of, open paren, e to the x-th power, close paren, equals x l n van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x 28 ${e}^{\mathrm{ln}4}=4$ e raised to the l n 4 power, equals 4 e verhef tot die l n 4 mag, is gelyk aan 4 29 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ l n 40, over l n 5, equals, the log base 5 of, 40 l n 40, oor l n 5, is gelyk aan, die logaritme basis 5 van, 40 30 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator l n 40, plus l n 60, and denominator l n 5 die breuk met teller l n 40, plus l n 60, en noemer l n 5

## Afrikaans Clearspeak Logarithms rule tests. Locale: af, Style: Log_LnAsNaturalLog.

 0 $\mathrm{ln}x$ natural log x natuurlike logaritme x 1 $\mathrm{ln}x-\mathrm{ln}\left(x-1\right)=\mathrm{ln}\left(\frac{x}{x-1}\right)$ natural log x, minus, the natural log of, open paren, x minus 1, close paren, equals, the natural log of, open paren, the fraction with numerator x, and denominator x minus 1, close paren natuurlike logaritme x, minus, die natuurlike logaritme van, links hakkie, x minus 1, regs hakkie, is gelyk aan, die natuurlike logaritme van, links hakkie, die breuk met teller x, en noemer x minus 1, regs hakkie 2 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x die natuurlike logaritme van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x 3 ${e}^{\mathrm{ln}x}=x$ e raised to the natural log x power, equals x e verhef tot die natuurlike logaritme x mag, is gelyk aan x 4 $\mathrm{ln}\left({e}^{x}\right)=x$ the natural log of, open paren, e to the x-th power, close paren, equals x die natuurlike logaritme van, links hakkie, e tot die x-de mag, regs hakkie, is gelyk aan x 5 ${e}^{\mathrm{ln}4}=4$ e raised to the natural log 4 power, equals 4 e verhef tot die natuurlike logaritme 4 mag, is gelyk aan 4 6 $\frac{\mathrm{ln}40}{\mathrm{ln}5}={\mathrm{log}}_{5}40$ natural log 40, over natural log 5, equals, the log base 5 of, 40 natuurlike logaritme 40, oor natuurlike logaritme 5, is gelyk aan, die logaritme basis 5 van, 40 7 $\frac{\mathrm{ln}40+\mathrm{ln}60}{\mathrm{ln}5}$ the fraction with numerator natural log 40, plus natural log 60, and denominator natural log 5 die breuk met teller natuurlike logaritme 40, plus natuurlike logaritme 60, en noemer natuurlike logaritme 5

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Auto.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 die 3 by 1 kolom matriks. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 die 3 by 1 kolom matriks. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 die 1 by 2 ry matriks. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 die 1 by 2 ry matriks. 3, 5 8 $\begin{array}{c}\left(3\right)\end{array}$ the 1 by 1 matrix with entry 3 die 1 by 1 matriks met waarde 3 9 $\left(\begin{array}{c}3\end{array}\right)$ the 1 by 1 matrix with entry 3 die 1 by 1 matriks met waarde 3 10 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1 11 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2 12 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x 13 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2 14 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 15 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 16 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0 17 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 18 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 19 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 20 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 21 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 22 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde 23 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2 24 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 25 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 26 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 27 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 28 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 29 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 30 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 31 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 32 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 33 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 34 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 35 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 36 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 37 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 38 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 39 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde 40 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_SpeakColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 die 3 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. Column 1: 3 Column 2: 5 die 1 by 2 ry matriks. kolom 1: 3 kolom 2: 5 8 $\left(\begin{array}{cccc}1& 2& 3& 4\end{array}\right)$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4 9 $\left[\begin{array}{cccc}1& 2& 3& 4\end{array}\right]$ the 1 by 4 row matrix. Column 1: 1 Column 2: 2 Column 3: 3 Column 4: 4 die 1 by 4 ry matriks. kolom 1: 1 kolom 2: 2 kolom 3: 3 kolom 4: 4 10 $\left(\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right)$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4 11 $\left[\begin{array}{c}1\\ 2\\ 3\\ 4\end{array}\right]$ the 4 by 1 column matrix. Row 1: 1 Row 2: 2 Row 3: 3 Row 4: 4 die 4 by 1 kolom matriks. Ry 1: 1 Ry 2: 2 Ry 3: 3 Ry 4: 4 12 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1 die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1 13 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2 14 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x 15 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2 die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2 16 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 17 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 18 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0 die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0 19 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 20 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 21 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 22 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 23 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes 24 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde 25 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, b sub 1 1; Column 2, b sub 1 2. Row 2: Column 1, b sub 2 1; Column 2, b sub 2 2 die 2 by 2 matriks. Ry 1: Kolom 1, b onderskrif 1 1; Kolom 2, b onderskrif 1 2. Ry 2: Kolom 1, b onderskrif 2 1; Kolom 2, b onderskrif 2 2 26 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 3 maal die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 27 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth. times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6 die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde. maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6 28 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5 die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5 29 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 30 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 31 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 32 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: Column 1, 2; Column 2, 4; Column 3, 1. Row 2: Column 1, 3; Column 2, 5; Column 3, 2. Row 3: Column 1, 1; Column 2, 4; Column 3, 7 die determinant van die 3 by 3 matriks. Ry 1: Kolom 1, 2; Kolom 2, 4; Kolom 3, 1. Ry 2: Kolom 1, 3; Kolom 2, 5; Kolom 3, 2. Ry 3: Kolom 1, 1; Kolom 2, 4; Kolom 3, 7 33 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 34 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0 die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0 35 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 36 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x 37 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 38 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 39 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes 40 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2 x; Column 2, y. Row 2: Column 1, one half; Column 2, two thirds die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2 x; Kolom 2, y. Ry 2: Kolom 1, een helfte; Kolom 2, twee derdes 41 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde 42 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, one half; Column 2, two thirds. Row 2: Column 1, three fourths; Column 2, one fifth die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, een helfte; Kolom 2, twee derdes. Ry 2: Kolom 1, drie kwarte; Kolom 2, een vyfde

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_SilentColNum.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3 die 3 by 1 kolom matriks. 1, 2, 3 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3 die 3 by 1 kolom matriks. 1, 2, 3 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5 die 1 by 2 ry matriks. 3, 5 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5 die 1 by 2 ry matriks. 3, 5 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. x plus 1, x minus 1 die 2 by 1 kolom matriks. x plus 1, x minus 1 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. 3, 6, 1, 2 die 4 by 1 kolom matriks. 3, 6, 1, 2 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. x plus 1, 2 x die 1 by 2 ry matriks. x plus 1, 2 x 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. 3, 6, 1, 2 die 1 by 4 ry matriks. 3, 6, 1, 2 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: 2, 1, 0, 5, 3 Row 2: 3, 4, 2, 7, 0 die 2 by 5 matriks. Ry 1: 2, 1, 0, 5, 3 Ry 2: 3, 4, 2, 7, 0 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2 die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. times the 2 by 3 matrix. Row 1: 3, 1 minus x, 4 Row 2: 0, 2, 6 die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. maal die 2 by 3 matriks. Ry 1: 3, 1 minus x, 4 Ry 2: 0, 2, 6 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0. times the 4 by 2 matrix. Row 1: 1, 3 Row 2: 4, 2 Row 3: 2, 1 Row 4: 0, 5 die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0. maal die 4 by 2 matriks. Ry 1: 1, 3 Ry 2: 4, 2 Ry 3: 2, 1 Ry 4: 0, 5 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7 die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: 0, 3, 4, 3 Row 2: 2, 1, 0, 9 Row 3: 3, 0, 2, 1 Row 4: 6, 2, 9, 0 die determinant van die 4 by 4 matriks. Ry 1: 0, 3, 4, 3 Ry 2: 2, 1, 0, 9 Ry 3: 3, 0, 2, 1 Ry 4: 6, 2, 9, 0 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5 plus x die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5 plus x 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5 die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_EndMatrix.

 0 $\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks 1 $\left[\begin{array}{cc}2& 1\\ 7& 5\end{array}\right]$ the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks 2 $\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks 3 $\left[\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right]$ the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks 4 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column matrix. 1, 2, 3. end matrix die 3 by 1 kolom matriks. 1, 2, 3. end matriks 5 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column matrix. 1, 2, 3. end matrix die 3 by 1 kolom matriks. 1, 2, 3. end matriks 6 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row matrix. 3, 5. end matrix die 1 by 2 ry matriks. 3, 5. end matriks 7 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row matrix. 3, 5. end matrix die 1 by 2 ry matriks. 3, 5. end matriks 8 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column matrix. Row 1: x plus 1 Row 2: x minus 1. end matrix die 2 by 1 kolom matriks. Ry 1: x plus 1 Ry 2: x minus 1. end matriks 9 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column matrix. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end matrix die 4 by 1 kolom matriks. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2. end matriks 10 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row matrix. Column 1: x plus 1 Column 2: 2 x. end matrix die 1 by 2 ry matriks. kolom 1: x plus 1 kolom 2: 2 x. end matriks 11 $\left(\begin{array}{cccc}3& 6& 1& 2\end{array}\right)$ the 1 by 4 row matrix. Column 1: 3 Column 2: 6 Column 3: 1 Column 4: 2. end matrix die 1 by 4 ry matriks. kolom 1: 3 kolom 2: 6 kolom 3: 1 kolom 4: 2. end matriks 12 $\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks 13 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks 14 $\left(\begin{array}{ccccc}2& 1& 0& 5& 3\\ 3& 4& 2& 7& 0\end{array}\right)$ the 2 by 5 matrix. Row 1: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 5; Column 5, 3. Row 2: Column 1, 3; Column 2, 4; Column 3, 2; Column 4, 7; Column 5, 0. end matrix die 2 by 5 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 5; Kolom 5, 3. Ry 2: Kolom 1, 3; Kolom 2, 4; Kolom 3, 2; Kolom 4, 7; Kolom 5, 0. end matriks 15 $\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks 16 $\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks 17 $\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks 18 $\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks 19 $\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks 20 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks 21 $\left(\begin{array}{cc}{b}_{11}& {b}_{12}\\ {b}_{21}& {b}_{22}\end{array}\right)$ the 2 by 2 matrix. Row 1: b sub 1 1, b sub 1 2 Row 2: b sub 2 1, b sub 2 2. end matrix die 2 by 2 matriks. Ry 1: b onderskrif 1 1, b onderskrif 1 2 Ry 2: b onderskrif 2 1, b onderskrif 2 2. end matriks 22 $3\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)\left(\begin{array}{ccc}3& 1& 4\\ 0& 2& 6\end{array}\right)$ 3 times the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix times the 2 by 3 matrix. Row 1: 3, 1, 4 Row 2: 0, 2, 6. end matrix 3 maal die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks maal die 2 by 3 matriks. Ry 1: 3, 1, 4 Ry 2: 0, 2, 6. end matriks 23 $\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)\left(\begin{array}{ccc}3& 1-x& 4\\ 0& 2& 6\end{array}\right)$ the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix times the 2 by 3 matrix. Row 1: Column 1, 3; Column 2, 1 minus x; Column 3, 4. Row 2: Column 1, 0; Column 2, 2; Column 3, 6. end matrix die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks maal die 2 by 3 matriks. Ry 1: Kolom 1, 3; Kolom 2, 1 minus x; Kolom 3, 4. Ry 2: Kolom 1, 0; Kolom 2, 2; Kolom 3, 6. end matriks 24 $\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)\left(\begin{array}{cc}1& 3\\ 4& 2\\ 2& 1\\ 0& 5\end{array}\right)$ the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix times the 4 by 2 matrix. Row 1: Column 1, 1; Column 2, 3. Row 2: Column 1, 4; Column 2, 2. Row 3: Column 1, 2; Column 2, 1. Row 4: Column 1, 0; Column 2, 5. end matrix die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks maal die 4 by 2 matriks. Ry 1: Kolom 1, 1; Kolom 2, 3. Ry 2: Kolom 1, 4; Kolom 2, 2. Ry 3: Kolom 1, 2; Kolom 2, 1. Ry 4: Kolom 1, 0; Kolom 2, 5. end matriks 25 $|\begin{array}{cc}2& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end determinant die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. sluit determinant 26 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2, 1 Row 2: 7, 5. end matrix die determinant van die 2 by 2 matriks. Ry 1: 2, 1 Ry 2: 7, 5. end matriks 27 $|\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}|$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end determinant die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. sluit determinant 28 $\mathrm{det}\left(\begin{array}{ccc}2& 4& 1\\ 3& 5& 2\\ 1& 4& 7\end{array}\right)$ the determinant of the 3 by 3 matrix. Row 1: 2, 4, 1 Row 2: 3, 5, 2 Row 3: 1, 4, 7. end matrix die determinant van die 3 by 3 matriks. Ry 1: 2, 4, 1 Ry 2: 3, 5, 2 Ry 3: 1, 4, 7. end matriks 29 $|\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}|$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end determinant die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. sluit determinant 30 $\mathrm{det}\left(\begin{array}{cccc}0& 3& 4& 3\\ 2& 1& 0& 9\\ 3& 0& 2& 1\\ 6& 2& 9& 0\end{array}\right)$ the determinant of the 4 by 4 matrix. Row 1: Column 1, 0; Column 2, 3; Column 3, 4; Column 4, 3. Row 2: Column 1, 2; Column 2, 1; Column 3, 0; Column 4, 9. Row 3: Column 1, 3; Column 2, 0; Column 3, 2; Column 4, 1. Row 4: Column 1, 6; Column 2, 2; Column 3, 9; Column 4, 0. end matrix die determinant van die 4 by 4 matriks. Ry 1: Kolom 1, 0; Kolom 2, 3; Kolom 3, 4; Kolom 4, 3. Ry 2: Kolom 1, 2; Kolom 2, 1; Kolom 3, 0; Kolom 4, 9. Ry 3: Kolom 1, 3; Kolom 2, 0; Kolom 3, 2; Kolom 4, 1. Ry 4: Kolom 1, 6; Kolom 2, 2; Kolom 3, 9; Kolom 4, 0. end matriks 31 $|\begin{array}{cc}2& 1\\ 7& 5+x\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end determinant die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. sluit determinant 32 $\mathrm{det}\left(\begin{array}{cc}2& 1\\ 7& 5+x\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: Column 1, 2; Column 2, 1. Row 2: Column 1, 7; Column 2, 5 plus x. end matrix die determinant van die 2 by 2 matriks. Ry 1: Kolom 1, 2; Kolom 2, 1. Ry 2: Kolom 1, 7; Kolom 2, 5 plus x. end matriks 33 $|\begin{array}{cc}2x& 1\\ 7& 5\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end determinant die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. sluit determinant 34 $\mathrm{det}\left(\begin{array}{cc}2x& 1\\ 7& 5\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, 1 Row 2: 7, 5. end matrix die determinant van die 2 by 2 matriks. Ry 1: 2 x, 1 Ry 2: 7, 5. end matriks 35 $|\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end determinant die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. sluit determinant 36 $\mathrm{det}\left(\begin{array}{cc}2x& y\\ \frac{1}{2}& \frac{2}{3}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: 2 x, y Row 2: one half, two thirds. end matrix die determinant van die 2 by 2 matriks. Ry 1: 2 x, y Ry 2: een helfte, twee derdes. end matriks 37 $|\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}|$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end determinant die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. sluit determinant 38 $\mathrm{det}\left(\begin{array}{cc}\frac{1}{2}& \frac{2}{3}\\ \frac{3}{4}& \frac{1}{5}\end{array}\right)$ the determinant of the 2 by 2 matrix. Row 1: one half, two thirds Row 2: three fourths, one fifth. end matrix die determinant van die 2 by 2 matriks. Ry 1: een helfte, twee derdes Ry 2: drie kwarte, een vyfde. end matriks

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Vector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3 die 3 by 1 kolom vektor. 1, 2, 3 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3 die 3 by 1 kolom vektor. 1, 2, 3 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5 die 1 by 2 ry vektor. 3, 5 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5 die 1 by 2 ry vektor. 3, 5 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1 die 2 by 1 kolom vektor. Ry 1: x plus 1 Ry 2: x minus 1 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2 die 4 by 1 kolom vektor. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x die 1 by 2 ry vektor. Kolom 1: x plus 1 Kolom 2: 2 x 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4 die 1 by 2 ry vektor. 3, 2. maal die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2 die 1 by 3 ry vektor. 1, 2, 7. maal die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. times the 2 by 1 column vector. 3, 2 die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. maal die 2 by 1 kolom vektor. 3, 2 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. times the 3 by 1 column vector. 1, 2, 7 die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. maal die 3 by 1 kolom vektor. 1, 2, 7

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_EndVector.

 0 $\left(\begin{array}{c}1\\ 2\\ 3\end{array}\right)$ the 3 by 1 column vector. 1, 2, 3. end vector die 3 by 1 kolom vektor. 1, 2, 3. end vektor 1 $\left[\begin{array}{c}1\\ 2\\ 3\end{array}\right]$ the 3 by 1 column vector. 1, 2, 3. end vector die 3 by 1 kolom vektor. 1, 2, 3. end vektor 2 $\left(\begin{array}{cc}3& 5\end{array}\right)$ the 1 by 2 row vector. 3, 5. end vector die 1 by 2 ry vektor. 3, 5. end vektor 3 $\left[\begin{array}{cc}3& 5\end{array}\right]$ the 1 by 2 row vector. 3, 5. end vector die 1 by 2 ry vektor. 3, 5. end vektor 4 $\left(\begin{array}{c}x+1\\ x-1\end{array}\right)$ the 2 by 1 column vector. Row 1: x plus 1 Row 2: x minus 1. end vector die 2 by 1 kolom vektor. Ry 1: x plus 1 Ry 2: x minus 1. end vektor 5 $\left(\begin{array}{c}3\\ 6\\ 1\\ 2\end{array}\right)$ the 4 by 1 column vector. Row 1: 3 Row 2: 6 Row 3: 1 Row 4: 2. end vector die 4 by 1 kolom vektor. Ry 1: 3 Ry 2: 6 Ry 3: 1 Ry 4: 2. end vektor 6 $\left(\begin{array}{cc}x+1& 2x\end{array}\right)$ the 1 by 2 row vector. Column 1: x plus 1 Column 2: 2 x. end vector die 1 by 2 ry vektor. Kolom 1: x plus 1 Kolom 2: 2 x. end vektor 7 $\left(\begin{array}{cc}3& 2\end{array}\right)\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)$ the 1 by 2 row vector. 3, 2. end vector times the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix die 1 by 2 ry vektor. 3, 2. end vektor maal die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. end matriks 8 $\left(\begin{array}{ccc}1& 2& 7\end{array}\right)\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)$ the 1 by 3 row vector. 1, 2, 7. end vector times the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix die 1 by 3 ry vektor. 1, 2, 7. end vektor maal die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. end matriks 9 $\left(\begin{array}{cc}0& 5\\ 9& 4\end{array}\right)\left(\begin{array}{c}3\\ 2\end{array}\right)$ the 2 by 2 matrix. Row 1: 0, 5 Row 2: 9, 4. end matrix times the 2 by 1 column vector. 3, 2. end vector die 2 by 2 matriks. Ry 1: 0, 5 Ry 2: 9, 4. end matriks maal die 2 by 1 kolom vektor. 3, 2. end vektor 10 $\left(\begin{array}{ccc}3& 5& 4\\ 8& 0& 6\\ 1& 4& 2\end{array}\right)\left(\begin{array}{c}1\\ 2\\ 7\end{array}\right)$ the 3 by 3 matrix. Row 1: 3, 5, 4 Row 2: 8, 0, 6 Row 3: 1, 4, 2. end matrix times the 3 by 1 column vector. 1, 2, 7. end vector die 3 by 3 matriks. Ry 1: 3, 5, 4 Ry 2: 8, 0, 6 Ry 3: 1, 4, 2. end matriks maal die 3 by 1 kolom vektor. 1, 2, 7. end vektor

## Afrikaans Clearspeak Matrices, Vectors, and Combinatorics rule tests. Locale: af, Style: Matrix_Combinatoric.

 0 $\left(\begin{array}{c}n\\ r\end{array}\right)$ n choose r n kies r 1 $\left(\begin{array}{c}10\\ 7\end{array}\right)$ 10 choose 7 10 kies 7 2 $\left(\begin{array}{c}15\\ 0\end{array}\right)$ 15 choose 0 15 kies 0 3 $\left(\begin{array}{c}8\\ 3\end{array}\right)$ 8 choose 3 8 kies 3

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 lyne, Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 2 lyne, Lyn 1: x; plus; y; is gelyk aan; 7. Lyn 2: 2 x; plus; 3 y; is gelyk aan; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: Equation 1 dubbelpunt x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt 2 x, plus 3 y, is gelyk aan 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y, is gelyk aan 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 2 lyne, Lyn 1: Equation 1 dubbelpunt; x plus y; is gelyk aan; 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y; is gelyk aan; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ 3 lines, Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 3 lyne, Lyn 1: 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: 3 x, plus 2 y, plus 5 z, is gelyk aan 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 3 lyne, Lyn 1: 4 x; plus; 3 y; plus; 2 z; is gelyk aan; 1. Lyn 2: 2 x; plus; 4 y; plus; 6 z; is gelyk aan; 6. Lyn 3: 3 x; plus; 2 y; plus; 5 z; is gelyk aan; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ 3 lines, Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 3 lyne, Lyn 1: Equation 1 dubbelpunt 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: Equation 2 dubbelpunt 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: Equation 3 dubbelpunt 3 x, plus 2 y, plus 5 z, is gelyk aan 1 9 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, Line 1: x is greater than or equal to 0. Line 2: y is greater than or equal to 0. Line 3: 3 x, minus 5 y, is less than or equal to 30 3 lyne, Lyn 1: x groter of gelyk aan 0. Lyn 2: y groter of gelyk aan 0. Lyn 3: 3 x, minus 5 y, kleiner of gelyk aan 30 10 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 lines, Line 1: 3 x, plus 8 equals 5 x. Line 2: 8 equals 5 x, minus 3 x. Line 3: 8 equals 2 x. Line 4: 4 equals x 4 lyne, Lyn 1: 3 x, plus 8 is gelyk aan 5 x. Lyn 2: 8 is gelyk aan 5 x, minus 3 x. Lyn 3: 8 is gelyk aan 2 x. Lyn 4: 4 is gelyk aan x 11 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x; plus; 8; equals; 5 x; blank; blank. Line 2: blank; blank; 8; equals; 5 x; minus; 3 x. Line 3: blank; blank; 8; equals; 2 x; blank; blank. Line 4: blank; blank; 4; equals; x; blank; blank 4 lyne, Lyn 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Lyn 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Lyn 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Lyn 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg 12 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ 4 lines, Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x 4 lyne, Lyn 1: Step 1 dubbelpunt 3 x, plus 8 is gelyk aan 5 x. Lyn 2: Step 2 dubbelpunt 8 is gelyk aan 5 x, minus 3 x. Lyn 3: Step 3 dubbelpunt 8 is gelyk aan 2 x. Lyn 4: Step 4 dubbelpunt 4 is gelyk aan x 13 f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0 14 f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Case.

 0 f of x, equals, 2 cases, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0 1 f of x, equals, 2 cases, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0 2 2 cases, Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0 2 gevalle, Geval 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. Geval 2: f van x, is gelyk aan x; if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Equation.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 equations, Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17 2 vergelykings, Vergelyking 1: x plus y is gelyk aan 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y; equals; 7. Equation 2: 2 x, plus 3 y; equals; 17 2 vergelykings, Vergelyking 1: x plus y; is gelyk aan; 7. Vergelyking 2: 2 x, plus 3 y; is gelyk aan; 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLinePausesBetweenColumns_Auto:MultiLineOverview_Auto:MultiLineLabel_Line.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Line.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 2 lyne, Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Row.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 rows, Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17 2 rye, Ry 1: x plus y is gelyk aan 7. Ry 2: 2 x, plus 3 y, is gelyk aan 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y; equals; 7. Row 2: 2 x, plus 3 y; equals; 17 2 rye, Ry 1: x plus y; is gelyk aan; 7. Ry 2: 2 x, plus 3 y; is gelyk aan; 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Step.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ 4 steps, Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x 4 stappe, Stap 1: 3 x, plus 8 is gelyk aan 5 x. Stap 2: 8 is gelyk aan 5 x, minus 3 x. Stap 3: 8 is gelyk aan 2 x. Stap 4: 4 is gelyk aan x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank 4 stappe, Stap 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Stap 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Stap 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Stap 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_Constraint.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 constraints, Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30 3 beperkings, beperking 1: x groter of gelyk aan 0. beperking 2: y groter of gelyk aan 0. beperking 3: 3 x, minus 5 y, kleiner of gelyk aan 30

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineLabel_None.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ 3 lines, x is greater than or equal to 0. y is greater than or equal to 0. 3 x, minus 5 y, is less than or equal to 30 3 lyne, x groter of gelyk aan 0. y groter of gelyk aan 0. 3 x, minus 5 y, kleiner of gelyk aan 30 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, 3 x; plus; 8; equals; 5 x; blank; blank. blank; blank; 8; equals; 5 x; minus; 3 x. blank; blank; 8; equals; 2 x; blank; blank. blank; blank; 4; equals; x; blank; blank 4 lyne, 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. leeg; leeg; 4; is gelyk aan; x; leeg; leeg 2 f of x, equals, 2 cases, negative x if x is less than 0. x if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, negatiewe x if x kleiner as 0. x if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ 2 lines, Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17 2 lyne, Lyn 1: x plus y. is gelyk aan. 7. Lyn 2: 2 x, plus 3 y. is gelyk aan. 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x. plus. y. equals. 7. Line 2: 2 x. plus. 3 y. equals. 17 2 lyne, Lyn 1: x. plus. y. is gelyk aan. 7. Lyn 2: 2 x. plus. 3 y. is gelyk aan. 17 3 $\begin{array}{cc}\text{Equation 1:}& \text{}\text{}x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon. x plus y equals 7. Line 2: Equation 2 colon. 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: Equation 1 dubbelpunt. x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt. 2 x, plus 3 y, is gelyk aan 17 4 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon. x plus y. equals. 7. Line 2: Equation 2 colon. 2 x, plus 3 y. equals. 17 2 lyne, Lyn 1: Equation 1 dubbelpunt. x plus y. is gelyk aan. 7. Lyn 2: Equation 2 dubbelpunt. 2 x, plus 3 y. is gelyk aan. 17 5 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x. plus. 3 y. plus. 2 z. equals. 1. Line 2: 2 x. plus. 4 y. plus. 6 z. equals. 6. Line 3: 3 x. plus. 2 y. plus. 5 z. equals. 1 3 lyne, Lyn 1: 4 x. plus. 3 y. plus. 2 z. is gelyk aan. 1. Lyn 2: 2 x. plus. 4 y. plus. 6 z. is gelyk aan. 6. Lyn 3: 3 x. plus. 2 y. plus. 5 z. is gelyk aan. 1 6 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x. plus. 8. equals. 5 x. blank. blank. Line 2: blank. blank. 8. equals. 5 x. minus. 3 x. Line 3: blank. blank. 8. equals. 2 x. blank. blank. Line 4: blank. blank. 4. equals. x. blank. blank 4 lyne, Lyn 1: 3 x. plus. 8. is gelyk aan. 5 x. leeg. leeg. Lyn 2: leeg. leeg. 8. is gelyk aan. 5 x. minus. 3 x. Lyn 3: leeg. leeg. 8. is gelyk aan. 2 x. leeg. leeg. Lyn 4: leeg. leeg. 4. is gelyk aan. x. leeg. leeg 7 f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x. if x kleiner as 0. Geval 2: x. if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 f of x, equals, 2 cases, Case 1: negative x. if x is less than 0. Case 2: x. if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x. if x kleiner as 0. Geval 2: x. if x groter of gelyk aan 0 1 2 cases, Case 1: f of x, equals negative x. if x is less than 0. Case 2: f of x, equals x. if x is greater than or equal to 0 2 gevalle, Geval 1: f van x, is gelyk aan negatiewe x. if x kleiner as 0. Geval 2: f van x, is gelyk aan x. if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y. equals. 7. Equation 2: 2 x, plus 3 y. equals. 17 2 vergelykings, Vergelyking 1: x plus y. is gelyk aan. 7. Vergelyking 2: 2 x, plus 3 y. is gelyk aan. 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y. equals. 7. Line 2: 2 x, plus 3 y. equals. 17 2 lyne, Lyn 1: x plus y. is gelyk aan. 7. Lyn 2: 2 x, plus 3 y. is gelyk aan. 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y. equals. 7. Row 2: 2 x, plus 3 y. equals. 17 2 rye, Ry 1: x plus y. is gelyk aan. 7. Ry 2: 2 x, plus 3 y. is gelyk aan. 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Long.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x. plus. 8. equals. 5 x. blank. blank. Step 2: blank. blank. 8. equals. 5 x. minus. 3 x. Step 3: blank. blank. 8. equals. 2 x. blank. blank. Step 4: blank. blank. 4. equals. x. blank. blank 4 stappe, Stap 1: 3 x. plus. 8. is gelyk aan. 5 x. leeg. leeg. Stap 2: leeg. leeg. 8. is gelyk aan. 5 x. minus. 3 x. Stap 3: leeg. leeg. 8. is gelyk aan. 2 x. leeg. leeg. Stap 4: leeg. leeg. 4. is gelyk aan. x. leeg. leeg

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 2 lyne, Lyn 1: x plus y, is gelyk aan, 7. Lyn 2: 2 x, plus 3 y, is gelyk aan, 17 1 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ 2 lines, Line 1: x, plus, y, equals, 7. Line 2: 2 x, plus, 3 y, equals, 17 2 lyne, Lyn 1: x, plus, y, is gelyk aan, 7. Lyn 2: 2 x, plus, 3 y, is gelyk aan, 17 2 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ 2 lines, Line 1: Equation 1 colon, x plus y equals 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals 17 2 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan 17 3 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ 2 lines, Line 1: Equation 1 colon, x plus y, equals, 7. Line 2: Equation 2 colon, 2 x, plus 3 y, equals, 17 2 lyne, Lyn 1: Equation 1 dubbelpunt, x plus y, is gelyk aan, 7. Lyn 2: Equation 2 dubbelpunt, 2 x, plus 3 y, is gelyk aan, 17 4 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ 3 lines, Line 1: 4 x, plus, 3 y, plus, 2 z, equals, 1. Line 2: 2 x, plus, 4 y, plus, 6 z, equals, 6. Line 3: 3 x, plus, 2 y, plus, 5 z, equals, 1 3 lyne, Lyn 1: 4 x, plus, 3 y, plus, 2 z, is gelyk aan, 1. Lyn 2: 2 x, plus, 4 y, plus, 6 z, is gelyk aan, 6. Lyn 3: 3 x, plus, 2 y, plus, 5 z, is gelyk aan, 1 5 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 lines, Line 1: 3 x, plus, 8, equals, 5 x, blank, blank. Line 2: blank, blank, 8, equals, 5 x, minus, 3 x. Line 3: blank, blank, 8, equals, 2 x, blank, blank. Line 4: blank, blank, 4, equals, x, blank, blank 4 lyne, Lyn 1: 3 x, plus, 8, is gelyk aan, 5 x, leeg, leeg. Lyn 2: leeg, leeg, 8, is gelyk aan, 5 x, minus, 3 x. Lyn 3: leeg, leeg, 8, is gelyk aan, 2 x, leeg, leeg. Lyn 4: leeg, leeg, 4, is gelyk aan, x, leeg, leeg 6 f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x, if x kleiner as 0. Geval 2: x, if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 f of x, equals, 2 cases, Case 1: negative x, if x is less than 0. Case 2: x, if x is greater than or equal to 0 f van x, is gelyk aan, 2 gevalle, Geval 1: negatiewe x, if x kleiner as 0. Geval 2: x, if x groter of gelyk aan 0 1 2 cases, Case 1: f of x, equals negative x, if x is less than 0. Case 2: f of x, equals x, if x is greater than or equal to 0 2 gevalle, Geval 1: f van x, is gelyk aan negatiewe x, if x kleiner as 0. Geval 2: f van x, is gelyk aan x, if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 equations, Equation 1: x plus y, equals, 7. Equation 2: 2 x, plus 3 y, equals, 17 2 vergelykings, Vergelyking 1: x plus y, is gelyk aan, 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan, 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 lines, Line 1: x plus y, equals, 7. Line 2: 2 x, plus 3 y, equals, 17 2 lyne, Lyn 1: x plus y, is gelyk aan, 7. Lyn 2: 2 x, plus 3 y, is gelyk aan, 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ 2 rows, Row 1: x plus y, equals, 7. Row 2: 2 x, plus 3 y, equals, 17 2 rye, Ry 1: x plus y, is gelyk aan, 7. Ry 2: 2 x, plus 3 y, is gelyk aan, 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_Auto:MultiLinePausesBetweenColumns_Short.

 0 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ 4 steps, Step 1: 3 x, plus, 8, equals, 5 x, blank, blank. Step 2: blank, blank, 8, equals, 5 x, minus, 3 x. Step 3: blank, blank, 8, equals, 2 x, blank, blank. Step 4: blank, blank, 4, equals, x, blank, blank 4 stappe, Stap 1: 3 x, plus, 8, is gelyk aan, 5 x, leeg, leeg. Stap 2: leeg, leeg, 8, is gelyk aan, 5 x, minus, 3 x. Stap 3: leeg, leeg, 8, is gelyk aan, 2 x, leeg, leeg. Stap 4: leeg, leeg, 4, is gelyk aan, x, leeg, leeg

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Auto:MultiLinePausesBetweenColumns_Auto:MultiLineOverview_None.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17 1 $\begin{array}{ccc}x+y& =& 7\\ 2x+3y& =& 17\end{array}$ Line 1: x plus y; equals; 7. Line 2: 2 x, plus 3 y; equals; 17 Lyn 1: x plus y; is gelyk aan; 7. Lyn 2: 2 x, plus 3 y; is gelyk aan; 17 2 $\begin{array}{ccccc}x& +& y& =& 7\\ 2x& +& 3y& =& 17\end{array}$ Line 1: x; plus; y; equals; 7. Line 2: 2 x; plus; 3 y; equals; 17 Lyn 1: x; plus; y; is gelyk aan; 7. Lyn 2: 2 x; plus; 3 y; is gelyk aan; 17 3 $\begin{array}{c}\text{Equation 1:}x+y=7\\ \text{Equation 2:}2x+3y=17\end{array}$ Line 1: Equation 1 colon x plus y equals 7. Line 2: Equation 2 colon 2 x, plus 3 y, equals 17 Lyn 1: Equation 1 dubbelpunt x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt 2 x, plus 3 y, is gelyk aan 17 4 $\begin{array}{cc}\text{Equation 1:}& x+y=7\\ \text{Equation 2:}& 2x+3y=17\end{array}$ Line 1: Equation 1 colon; x plus y equals 7. Line 2: Equation 2 colon; 2 x, plus 3 y, equals 17 Lyn 1: Equation 1 dubbelpunt; x plus y is gelyk aan 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y, is gelyk aan 17 5 $\begin{array}{cccc}\text{Equation 1:}& \text{}x+y& =& 7\\ \text{Equation 2:}& 2x+3y& =& 17\end{array}\text{}$ Line 1: Equation 1 colon; x plus y; equals; 7. Line 2: Equation 2 colon; 2 x, plus 3 y; equals; 17 Lyn 1: Equation 1 dubbelpunt; x plus y; is gelyk aan; 7. Lyn 2: Equation 2 dubbelpunt; 2 x, plus 3 y; is gelyk aan; 17 6 $\begin{array}{c}4x+3y+2z=17\\ 2x+4y+6z=6\\ 3x+2y+5z=1\end{array}$ Line 1: 4 x, plus 3 y, plus 2 z, equals 17. Line 2: 2 x, plus 4 y, plus 6 z, equals 6. Line 3: 3 x, plus 2 y, plus 5 z, equals 1 Lyn 1: 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: 3 x, plus 2 y, plus 5 z, is gelyk aan 1 7 $\begin{array}{ccccccc}4x& +& 3y& +& 2z& =& 1\\ 2x& +& 4y& +& 6z& =& 6\\ 3x& +& 2y& +& 5z& =& 1\end{array}$ Line 1: 4 x; plus; 3 y; plus; 2 z; equals; 1. Line 2: 2 x; plus; 4 y; plus; 6 z; equals; 6. Line 3: 3 x; plus; 2 y; plus; 5 z; equals; 1 Lyn 1: 4 x; plus; 3 y; plus; 2 z; is gelyk aan; 1. Lyn 2: 2 x; plus; 4 y; plus; 6 z; is gelyk aan; 6. Lyn 3: 3 x; plus; 2 y; plus; 5 z; is gelyk aan; 1 8 $\begin{array}{c}\text{Equation 1:}4x+3y+2z=17\\ \text{Equation 2:}2x+4y+6z=6\\ \text{Equation 3:}3x+2y+5z=1\end{array}$ Line 1: Equation 1 colon 4 x, plus 3 y, plus 2 z, equals 17. Line 2: Equation 2 colon 2 x, plus 4 y, plus 6 z, equals 6. Line 3: Equation 3 colon 3 x, plus 2 y, plus 5 z, equals 1 Lyn 1: Equation 1 dubbelpunt 4 x, plus 3 y, plus 2 z, is gelyk aan 17. Lyn 2: Equation 2 dubbelpunt 2 x, plus 4 y, plus 6 z, is gelyk aan 6. Lyn 3: Equation 3 dubbelpunt 3 x, plus 2 y, plus 5 z, is gelyk aan 1 9 $\begin{array}{c}\text{Step 1:}3x+8=5x\\ \text{Step 2:}8=5x-3x\\ \text{Step 3:}8=2x\\ \text{Step 4:}4=x\end{array}$ Line 1: Step 1 colon 3 x, plus 8 equals 5 x. Line 2: Step 2 colon 8 equals 5 x, minus 3 x. Line 3: Step 3 colon 8 equals 2 x. Line 4: Step 4 colon 4 equals x Lyn 1: Step 1 dubbelpunt 3 x, plus 8 is gelyk aan 5 x. Lyn 2: Step 2 dubbelpunt 8 is gelyk aan 5 x, minus 3 x. Lyn 3: Step 3 dubbelpunt 8 is gelyk aan 2 x. Lyn 4: Step 4 dubbelpunt 4 is gelyk aan x 10 f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f van x, is gelyk aan, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0 11 f of x, equals, Case 1: negative x; if x is less than 0. Case 2: x; if x is greater than or equal to 0 f van x, is gelyk aan, Geval 1: negatiewe x; if x kleiner as 0. Geval 2: x; if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Case:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 f of x, equals, Case 1: negative x if x is less than 0. Case 2: x if x is greater than or equal to 0 f van x, is gelyk aan, Geval 1: negatiewe x if x kleiner as 0. Geval 2: x if x groter of gelyk aan 0 1 Case 1: f of x, equals negative x; if x is less than 0. Case 2: f of x, equals x; if x is greater than or equal to 0 Geval 1: f van x, is gelyk aan negatiewe x; if x kleiner as 0. Geval 2: f van x, is gelyk aan x; if x groter of gelyk aan 0

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Equation:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Equation 1: x plus y equals 7. Equation 2: 2 x, plus 3 y, equals 17 Vergelyking 1: x plus y is gelyk aan 7. Vergelyking 2: 2 x, plus 3 y, is gelyk aan 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Line:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Line 1: x plus y equals 7. Line 2: 2 x, plus 3 y, equals 17 Lyn 1: x plus y is gelyk aan 7. Lyn 2: 2 x, plus 3 y, is gelyk aan 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Row:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}x+y=7\\ 2x+3y=17\end{array}$ Row 1: x plus y equals 7. Row 2: 2 x, plus 3 y, equals 17 Ry 1: x plus y is gelyk aan 7. Ry 2: 2 x, plus 3 y, is gelyk aan 17

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Step:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{c}3x+8=5x\\ 8=5x-3x\\ 8=2x\\ 4=x\end{array}$ Step 1: 3 x, plus 8 equals 5 x. Step 2: 8 equals 5 x, minus 3 x. Step 3: 8 equals 2 x. Step 4: 4 equals x Stap 1: 3 x, plus 8 is gelyk aan 5 x. Stap 2: 8 is gelyk aan 5 x, minus 3 x. Stap 3: 8 is gelyk aan 2 x. Stap 4: 4 is gelyk aan x 1 $\begin{array}{ccccccc}3x& +& 8& =& 5x& & \\ & & 8& =& 5x& -& 3x\\ & & 8& =& 2x& & \\ & & 4& =& x& & \end{array}$ Step 1: 3 x; plus; 8; equals; 5 x; blank; blank. Step 2: blank; blank; 8; equals; 5 x; minus; 3 x. Step 3: blank; blank; 8; equals; 2 x; blank; blank. Step 4: blank; blank; 4; equals; x; blank; blank Stap 1: 3 x; plus; 8; is gelyk aan; 5 x; leeg; leeg. Stap 2: leeg; leeg; 8; is gelyk aan; 5 x; minus; 3 x. Stap 3: leeg; leeg; 8; is gelyk aan; 2 x; leeg; leeg. Stap 4: leeg; leeg; 4; is gelyk aan; x; leeg; leeg

## Afrikaans Clearspeak MultiLineEntries rule tests. Locale: af, Style: MultiLineLabel_Constraint:MultiLineOverview_None:MultiLinePausesBetweenColumns_Auto.

 0 $\begin{array}{l}x\ge 0\\ y\ge 0\\ 3x-5y\le 30\end{array}$ Constraint 1: x is greater than or equal to 0. Constraint 2: y is greater than or equal to 0. Constraint 3: 3 x, minus 5 y, is less than or equal to 30 beperking 1: x groter of gelyk aan 0. beperking 2: y groter of gelyk aan 0. beperking 3: 3 x, minus 5 y, kleiner of gelyk aan 30

## Afrikaans Clearspeak NamedSets rule tests. Locale: af, Style: Verbose.

 0 $ℝ$ the real numbers die riële getalle 1 $\mathbb{R}$ the real numbers die riële getalle 2 $ℂ$ the complex numbers die komplekse getalle 3 $\mathbb{C}$ the complex numbers die komplekse getalle 4 $ℤ$ the integers die heelgetalle 5 $\mathbb{Z}$ the integers die heelgetalle 6 $ℚ$ the rational numbers die rasionele getalle 7 $\mathbb{Q}$ the rational numbers die rasionele getalle 8 $ℕ$ the natural numbers die natuurlike getalle 9 $\mathbb{N}$ the natural numbers die natuurlike getalle 10 ${ℕ}_{0}$ the natural numbers with zero die natuurlike getalle met nul 11 ${\mathbb{N}}_{0}$ the natural numbers with zero die natuurlike getalle met nul 12 ${ℤ}^{+}$ the positive integers die positiewe heelgetalle 13 ${\mathbb{Z}}^{+}$ the positive integers die positiewe heelgetalle 14 ${ℤ}^{-}$ the negative integers die negatiewe heelgetalle 15 ${\mathbb{Z}}^{-}$ the negative integers die negatiewe heelgetalle 16 ${ℝ}^{2}$ r-two r-twee 17 ${\mathbb{R}}^{2}$ r-two r-twee 18 ${ℤ}^{3}$ z-three z-drie 19 ${\mathbb{Z}}^{3}$ z-three z-drie 20 ${ℂ}^{n}$ c-n c-n 21 ${\mathbb{C}}^{n}$ c-n c-n 22 ${ℝ}^{\infty }$ r-infinity r-oneindigheid 23 ${\mathbb{R}}^{\infty }$ r-infinity r-oneindigheid

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Auto.

 0 $\left(25\right)$ 25 25 1 $\left(2x\right)$ 2 x 2 x 2 $2+\left(-2\right)$ 2 plus negative 2 2 plus negatiewe 2 3 $2-\left(-2\right)$ 2 minus negative 2 2 minus negatiewe 2 4 $2--2$ 2 minus negative 2 2 minus negatiewe 2 5 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 2 minus, links hakkie, negatiewe 2, regs hakkie, tot die mag drie 6 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared links hakkie, 2 x, regs hakkie, kwadraat 7 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power links hakkie, 2 x, regs hakkie, verhef tot die y plus 1 mag 8 $\left(-2x\right)$ negative 2 x negatiewe 2 x 9 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared links hakkie, negatiewe 2 x, regs hakkie, kwadraat 10 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared negatiewe, links hakkie, 2 x, regs hakkie, kwadraat 11 $\left(\frac{1}{2}\right)$ one half een helfte 12 $\left(\frac{3}{4}x\right)$ three fourths x drie kwarte x 13 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren links hakkie, 11 oor 22, regs hakkie 14 ${\left(\frac{1}{2}\right)}^{4}$ one half to the fourth power een helfte tot die vierde mag 15 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared links hakkie, 11 oor 15, regs hakkie, kwadraat

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Speak.

 0 $\left(25\right)$ open paren, 25, close paren links hakkie, 25, regs hakkie 1 $\left(2x\right)$ open paren, 2 x, close paren links hakkie, 2 x, regs hakkie 2 $2+\left(-2\right)$ 2 plus, open paren, negative 2, close paren 2 plus, links hakkie, negatiewe 2, regs hakkie 3 $2-\left(-2\right)$ 2 minus, open paren, negative 2, close paren 2 minus, links hakkie, negatiewe 2, regs hakkie 4 $2-{\left(-2\right)}^{3}$ 2 minus, open paren, negative 2, close paren, cubed 2 minus, links hakkie, negatiewe 2, regs hakkie, tot die mag drie 5 ${\left(2x\right)}^{2}$ open paren, 2 x, close paren, squared links hakkie, 2 x, regs hakkie, kwadraat 6 ${\left(2x\right)}^{y+1}$ open paren, 2 x, close paren, raised to the y plus 1 power links hakkie, 2 x, regs hakkie, verhef tot die y plus 1 mag 7 $\left(-2x\right)$ open paren, negative 2 x, close paren links hakkie, negatiewe 2 x, regs hakkie 8 ${\left(-2x\right)}^{2}$ open paren, negative 2 x, close paren, squared links hakkie, negatiewe 2 x, regs hakkie, kwadraat 9 $-{\left(2x\right)}^{2}$ negative, open paren, 2 x, close paren, squared negatiewe, links hakkie, 2 x, regs hakkie, kwadraat 10 $\left(\frac{1}{2}\right)$ open paren, one half, close paren links hakkie, een helfte, regs hakkie 11 $\left(\frac{3}{4}x\right)$ open paren, three fourths x, close paren links hakkie, drie kwarte x, regs hakkie 12 $\left(\frac{11}{22}\right)$ open paren, 11 over 22, close paren links hakkie, 11 oor 22, regs hakkie 13 ${\left(\frac{1}{2}\right)}^{4}$ open paren, one half, close paren, to the fourth power links hakkie, een helfte, regs hakkie, tot die vierde mag 14 ${\left(\frac{11}{15}\right)}^{2}$ open paren, 11 over 15, close paren, squared links hakkie, 11 oor 15, regs hakkie, kwadraat

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_CoordPoint.

 0 $\left(1,2\right)$ the point with coordinates 1 comma 2 die punt met koördinate 1 komma 2 1 $\left(x,y\right)$ the point with coordinates x comma y die punt met koördinate x komma y 2 $\left(1,2,3\right)$ the point with coordinates 1 comma 2 comma 3 die punt met koördinate 1 komma 2 komma 3 3 $\left(x,y,z\right)$ the point with coordinates x comma y comma z die punt met koördinate x komma y komma z 4 $\left(1,2,386\right)$ the point with coordinates 1 comma 2 comma 386 die punt met koördinate 1 komma 2 komma 386

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Interval.

 0 $\left(a,\text{}b\right)$ the interval from a to b, not including a or b die interval van a tot b, nie insluitend a of b 1 $\left(0,\text{}1\right)$ the interval from 0 to 1, not including 0 or 1 die interval van 0 tot 1, nie insluitend 0 of 1 2 $\left[a,\text{}b\right)$ the interval from a to b, including a, but not including b die interval van a tot b, insluitend a, maar nie insluitend b 3 $\left[0,\text{}1\right)$ the interval from 0 to 1, including 0, but not including 1 die interval van 0 tot 1, insluitend 0, maar nie insluitend 1 4 $\left(a,\text{}b\right]$ the interval from a to b, not including a, but including b die interval van a tot b, nie insluitend a, maar insluitend b 5 $\left(0,\text{}1\right]$ the interval from 0 to 1, not including 0, but including 1 die interval van 0 tot 1, nie insluitend 0, maar insluitend 1 6 $\left[a,\text{}b\right]$ the interval from a to b, including a and b die interval van a tot b, insluitend a en b 7 $\left[0,\text{}1\right]$ the interval from 0 to 1, including 0 and 1 die interval van 0 tot 1, insluitend 0 en 1 8 $\left(-\infty ,\text{}b\right)$ the interval from negative infinity to b, not including b die interval van negatiewe oneindigheid tot b, nie insluitend b 9 $\left(-\infty ,\text{}1\right)$ the interval from negative infinity to 1, not including 1 die interval van negatiewe oneindigheid tot 1, nie insluitend 1 10 $\left(-\infty ,b\right]$ the interval from negative infinity to b, including b die interval van negatiewe oneindigheid tot b, insluitend b 11 $\left(-\infty ,1\right]$ the interval from negative infinity to 1, including 1 die interval van negatiewe oneindigheid tot 1, insluitend 1 12 $\left(a,\text{}\infty \right)$ the interval from a to infinity, not including a die interval van a tot oneindigheid, nie insluitend a 13 $\left(1,\text{}\infty \right)$ the interval from 1 to infinity, not including 1 die interval van 1 tot oneindigheid, nie insluitend 1 14 $\left[a,\infty \right)$ the interval from a to infinity, including a die interval van a tot oneindigheid, insluitend a 15 $\left[1,\infty \right)$ the interval from 1 to infinity, including 1 die interval van 1 tot oneindigheid, insluitend 1 16 $\left(-\infty ,\text{}\infty \right)$ the interval from negative infinity to infinity die interval van negatiewe oneindigheid tot oneindigheid 17 $\left(-\infty ,\text{}+\infty \right)$ the interval from negative infinity to positive infinity die interval van negatiewe oneindigheid tot positief oneindigheid

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_SpeakNestingLevel.

 0 $f\left(g\left(x\right)\right)$ f of, g of x f van, g van x 1 $f\left(g\left(x+1\right)\right)$ f of, open paren, g of, open paren, x plus 1, close paren, close paren f van, links hakkie, g van, links hakkie, x plus 1, regs hakkie, regs hakkie 2 $6-\left[2-\left(3+5\right)\right]$ 6 minus, open bracket, 2 minus, open paren, 3 plus 5, close paren, close bracket 6 minus, links blokhakkie, 2 minus, links hakkie, 3 plus 5, regs hakkie, regs blokhakkie 3 $6-\left(2-\left(3+5\right)\right)$ 6 minus, open paren, 2 minus, open second paren, 3 plus 5, close second paren, close paren 6 minus, links hakkie, 2 minus, tweede links hakkie, 3 plus 5, tweede regs hakkie, regs hakkie 4 $4\left[x+3\left(2x+1\right)\right]$ 4 times, open bracket, x plus 3 times, open paren, 2 x, plus 1, close paren, close bracket 4 maal, links blokhakkie, x plus 3 maal, links hakkie, 2 x, plus 1, regs hakkie, regs blokhakkie 5 $4\left(x+3\left(2x+1\right)\right)$ 4 times, open paren, x plus 3 times, open second paren, 2 x, plus 1, close second paren, close paren 4 maal, links hakkie, x plus 3 maal, tweede links hakkie, 2 x, plus 1, tweede regs hakkie, regs hakkie 6 $1+\left(2+\left(3+7\right)-\left(2+8\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 plus 7, close second paren, minus, open second paren, 2 plus 8, close second paren, close paren 1 plus, links hakkie, 2 plus, tweede links hakkie, 3 plus 7, tweede regs hakkie, minus, tweede links hakkie, 2 plus 8, tweede regs hakkie, regs hakkie 7 $1+\left(2+\left(3-\left(4-5\right)\right)\right)$ 1 plus, open paren, 2 plus, open second paren, 3 minus, open third paren, 4 minus 5, close third paren, close second paren, close paren 1 plus, links hakkie, 2 plus, tweede links hakkie, 3 minus, derde links hakkie, 4 minus 5, derde regs hakkie, tweede regs hakkie, regs hakkie 8 $\left(\left(2+\left(3+4\right)+5\right)+6+\left(\left(7+\left(8+1\right)\right)+2\right)\right)$ open paren, open second paren, 2 plus, open third paren, 3 plus 4, close third paren, plus 5, close second paren, plus 6 plus, open second paren, open third paren, 7 plus, open fourth paren, 8 plus 1, close fourth paren, close third paren, plus 2, close second paren, close paren links hakkie, tweede links hakkie, 2 plus, derde links hakkie, 3 plus 4, derde regs hakkie, plus 5, tweede regs hakkie, plus 6 plus, tweede links hakkie, derde links hakkie, 7 plus, vierde links hakkie, 8 plus 1, vierde regs hakkie, derde regs hakkie, plus 2, tweede regs hakkie, regs hakkie

## Afrikaans Clearspeak Parentheses rule tests. Locale: af, Style: Paren_Silent.

 0 $\left(25\right)$ 25 25 1 $\left(2x\right)$ 2 x 2 x 2 $2+\left(-2\right)$ 2 plus, negative 2 2 plus, negatiewe 2 3 $2-\left(-2\right)$ 2 minus, negative 2 2 minus, negatiewe 2 4 $2-{\left(-2\right)}^{3}$ 2 minus, negative 2, cubed 2 minus, negatiewe 2, tot die mag drie 5 ${\left(2x\right)}^{2}$ 2 x, squared 2 x, kwadraat 6 ${\left(2x\right)}^{y+1}$ 2 x, raised to the y plus 1 power 2 x, verhef tot die y plus 1 mag 7 $\left(-2x\right)$ negative 2 x negatiewe 2 x 8 ${\left(-2x\right)}^{2}$ negative 2 x, squared negatiewe 2 x, kwadraat 9 $-{\left(2x\right)}^{2}$ negative, 2 x, squared negatiewe, 2 x, kwadraat 10 $\left(\frac{1}{2}\right)$ one half een helfte 11 $\left(\frac{3}{4}x\right)$ three fourths x drie kwarte x 12 $\left(\frac{11}{22}\right)$ 11 over 22 11 oor 22 13 ${\left(\frac{1}{2}\right)}^{4}$ one half, to the fourth power een helfte, tot die vierde mag 14 ${\left(\frac{11}{15}\right)}^{2}$ 11 over 15, squared 11 oor 15, kwadraat

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_Auto.

 0 $6×8$ 6 times 8 6 maal 8 1 $m×n$ m times n m maal n 2 $3×3$ 3 times 3 3 maal 3

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_By.

 0 $6×8$ 6 by 8 6 maal 8 1 $m×n$ m by n m maal n 2 $3×3$ 3 by 3 3 maal 3

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolX_Cross.

 0 $u×v$ u cross v u maal v

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolDot_Auto.

 0 $6\cdot 8$ 6 times 8 6 punt 8 1 $m\cdot n$ m times n m punt n 2 $3\cdot 3$ 3 times 3 3 punt 3

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: MultsymbolDot_Dot.

 0 $6\cdot 8$ 6 dot 8 6 punt 8 1 $m\cdot n$ m dot n m punt n 2 $3\cdot 3$ 3 dot 3 3 punt 3

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: TriangleSymbol_Auto.

 0 $\Delta ABC$ triangle A B C driehoek A B C 1 $\Delta DEF$ triangle D E F driehoek D E F

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: TriangleSymbol_Delta.

 0 $\Delta x$ Delta x groot delta x 1 $f\left(x+\Delta x\right)$ f of, open paren, x plus Delta x, close paren f van, links hakkie, x plus groot delta x, regs hakkie

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Ellipses_Auto.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma dot dot dot 1 komma 2 komma 3 komma ellipsis 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma dot dot dot comma 20 1 komma 2 komma 3 komma ellipsis komma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot ellipsis komma, negatiewe 2, komma, negatiewe 1, komma 0 komma 1 komma 2 komma ellipsis

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Ellipses_AndSoOn.

 0 $1,\text{}2,\text{}3,\text{}\dots$ 1 comma 2 comma 3 comma and so on 1 komma 2 komma 3 komma en so voorts 1 $1,\text{}2,\text{}3,\text{}\dots \text{},20$ 1 comma 2 comma 3 comma and so on up to comma 20 1 komma 2 komma 3 komma en so voorts tot by komma 20 2 $\dots \text{},-2,\text{}-1,\text{}0,\text{}1,\text{}2,\text{}\dots$ dot dot dot comma, negative 2, comma, negative 1, comma 0 comma 1 comma 2 comma dot dot dot ellipsis komma, negatiewe 2, komma, negatiewe 1, komma 0 komma 1 komma 2 komma ellipsis

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Auto.

 0 $3|6$ 3 divides 6 3 gedeel deur 6 1 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0 die versameling van alle x sodat x groter as 0 2 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 die versameling van alle x sodat, die absolute waarde van x, groter as 2 3 $f\left(x\right){|}_{x=5}$ f of x, evaluated at x equals 5 f van x, geëvalueer by x is gelyk aan 5 4 ${x}^{2}+2x{|}_{x=2}$ x squared plus 2 x, evaluated at x equals 2 x kwadraat plus 2 x, geëvalueer by x is gelyk aan 2 5 ${x}^{2}+x{|}_{0}^{1}$ x squared plus x, evaluated at 1, minus the same expression evaluated at 0 x kwadraat plus x, geëvalueer by 1, minus dieselfde uitdrukking geëvalueer by 0

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_SuchThat.

 0 $\left\{x|x>0\right\}$ the set of all x such that x is greater than 0 die versameling van alle x sodat x groter as 0

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Divides.

 0 $3|6$ 3 divides 6 3 gedeel deur 6

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: VerticalLine_Given.

 0 $P\text{}\left(A|B\right)$ P of, open paren, A given B, close paren P van, links hakkie, A gegee B, regs hakkie

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Auto.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period If x is 'n element van die heelgetalle then 2 x, is an even number punt 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x in the integers such that x is greater than 5 die versameling van alle x in die heelgetalle sodat x groter as 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers 3 plus 2 i, is nie 'n element van nie die riële getalle

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Member.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is a member of the integers then 2 x, is an even number period If x is 'n element van die heelgetalle then 2 x, is an even number punt 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x member of the integers such that x is greater than 5 die versameling van alle x element van die heelgetalle sodat x groter as 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not a member of the real numbers 3 plus 2 i, is nie 'n element vanf die riële getalle

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Element.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x is an element of the integers then 2 x, is an even number period If x is 'n element van die heelgetalle then 2 x, is an even number punt 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x element of the integers such that x is greater than 5 die versameling van alle x element van die heelgetalle sodat x groter as 5 2 $3+2i\notin ℝ$ 3 plus 2 i, is not an element of the real numbers 3 plus 2 i, is nie 'n element van die riële getalle

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: SetMemberSymbol_Belongs.

 0 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period If x behoord aan die heelgetalle then 2 x, is an even number punt 1 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 die versameling van alle x behoord aan die heelgetalle sodat x groter as 5 2 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers 3 plus 2 i, behoord nie aan die riële getalle 3 $\text{If\hspace{0.17em}}x\in ℤ\text{\hspace{0.17em}then\hspace{0.17em}}2x\text{\hspace{0.17em}is an even number.}$ If x belongs to the integers then 2 x, is an even number period If x behoord aan die heelgetalle then 2 x, is an even number punt 4 $\left\{x\in ℤ|x>5\right\}$ the set of all x belonging to the integers such that x is greater than 5 die versameling van alle x behoord aan die heelgetalle sodat x groter as 5 5 $3+2i\notin ℝ$ 3 plus 2 i, does not belong to the real numbers 3 plus 2 i, behoord nie aan die riële getalle

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Sets_woAll:SetMemberSymbol_Belongs.

 0 $\left\{x\in ℤ:2 the set of x belonging to the integers such that 2 is less than x is less than 7 die versameling van x behoord aan die heelgetalle sodat 2 kleiner as x kleiner as 7

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Sets_woAll:SetMemberSymbol_Member.

 0 $\left\{x\in ℤ|x>5\right\}$ the set of x member of the integers such that x is greater than 5 die versameling van x element van die heelgetalle sodat x groter as 5

## Afrikaans Clearspeak Part2Symbols rule tests. Locale: af, Style: Verbose.

 0 $\sum _{n=1}^{10}n$ the sum from n equals 1 to 10 of n die som vanaf n is gelyk aan 1 tot 10 van n 1 $\sum _{n=1}^{\infty }n$ the sum from n equals 1 to infinity of n die som vanaf n is gelyk aan 1 tot oneindigheid van n 2 $\sum _{i\in {ℤ}^{+}}i$ the sum over i is a member of the positive integers, of i die som oor i is 'n element van die positiewe heelgetalle, van i 3 $\sum _{S}i$ the sum over S, of i die som oor S, van i 4 $\sum {a}_{i}$ the sum of, a sub i die som van, a onderskrif i 5 $\prod _{i=1}^{10}i$ the product from i equals 1 to 10 of i die produk vanaf i is gelyk aan 1 tot 10 van i 6 $\prod _{i\in {ℤ}^{+}}\frac{i}{i+1}$ the product over i is a member of the positive integers, of, the fraction with numerator i, and denominator i plus 1 die produk oor i is 'n element van die positiewe heelgetalle, van, die breuk met teller i, en noemer i plus 1 7 $\prod _{{ℤ}^{+}}\frac{i}{i+1}$ the product over the positive integers, of, the fraction with numerator i, and denominator i plus 1 die produk oor die positiewe heelgetalle, van, die breuk met teller i, en noemer i plus 1 8 $\prod {a}_{i}$ the product of, a sub i die produk van, a onderskrif i 9 $\underset{i=1}{\overset{10}{\cap }}{S}_{i}$ the intersection from i equals 1 to 10 of, S sub i die interseksie vanaf i is gelyk aan 1 tot 10 van, S onderskrif i 10 $\underset{i=1}{\overset{10}{\cup }}{S}_{i}$ the union from i equals 1 to 10 of, S sub i die eenheid vanaf i is gelyk aan 1 tot 10 van, S onderskrif i 11 $\cap {S}_{i}$ the intersection of, S sub i die interseksie van, S onderskrif i 12 $\cup {S}_{i}$ the union of, S sub i die eenheid van, S onderskrif i 13 $\underset{C}{\cap }{S}_{i}$ the intersection over C, of, S sub i die interseksie oor C, van, S onderskrif i 14 $\underset{C}{\cup }{S}_{i}$ the union over C, of, S sub i die eenheid oor C, van, S onderskrif i 15 $\int f\left(x\right)\text{}dx$ the integral of f of x, d x die integraal van f van x, d x 16 ${\int }_{0}^{1}f\left(x\right)\text{}dx$ the integral from 0 to 1 of f of x, d x die integraal vanaf 0 tot 1 van f van x, d x 17 $\underset{ℝ}{\int }f\left(x\right)\text{}dx$ the integral over the real numbers, of f of x, d x die integraal oor die riële getalle, van f van x, d x

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Auto.

 0 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A priem, B priem 1 ${A}^{″}{B}^{″}$ A double prime, B double prime A dubbelpriem, B dubbelpriem 2 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippelpriem, B trippelpriem 3 ${f}^{\prime }\left(x\right)$ f prime of x f priem van x 4 ${f}^{″}\left(x\right)$ f double prime of x f dubbelpriem van x 5 ${f}^{‴}\left(x\right)$ f triple prime of x f trippelpriem van x 6 ${1}^{\prime }$ 1 foot 1 voet 7 ${2}^{\prime }$ 2 feet 2 voet 8 ${1}^{″}$ 1 inch 1 duim 9 ${2}^{″}$ 2 inches 2 duim 10 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 16 voet, 10 duim 11 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grade, 10 minute 12 $x°{y}^{\prime }$ x degrees, y minutes x grade, y minute 13 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grade, 10 minute, 25 sekondes 14 $x°{y}^{\prime }{z}^{″}$ x degrees, y minutes, z seconds x grade, y minute, z sekondes

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Angle.

 0 ${1}^{\prime }$ 1 minute 1 minuut 1 ${x}^{\prime }$ x minutes x minute 2 ${2}^{\prime }$ 2 minutes 2 minute 3 ${1}^{″}$ 1 second 1 sekonde 4 ${x}^{″}$ x seconds x sekondes 5 ${2}^{″}$ 2 seconds 2 sekondes 6 ${16}^{\prime }{10}^{″}$ 16 minutes, 10 seconds 16 minute, 10 sekondes 7 ${x}^{\prime }{y}^{″}$ x minutes, y seconds x minute, y sekondes 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grade, 10 minute 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grade, 10 minute, 25 sekondes 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A priem, B priem 11 ${A}^{″}{B}^{″}$ A double prime, B double prime A dubbelpriem, B dubbelpriem 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippelpriem, B trippelpriem 13 ${f}^{\prime }\left(x\right)$ f prime of x f priem van x 14 ${f}^{″}\left(x\right)$ f double prime of x f dubbelpriem van x 15 ${f}^{‴}\left(x\right)$ f triple prime of x f trippelpriem van x

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Prime_Length.

 0 ${1}^{\prime }$ 1 foot 1 voet 1 ${x}^{\prime }$ x feet x voet 2 ${2}^{\prime }$ 2 feet 2 voet 3 ${1}^{″}$ 1 inch 1 duim 4 ${x}^{″}$ x inches x duim 5 ${2}^{″}$ 2 inches 2 duim 6 ${16}^{\prime }{10}^{″}$ 16 feet, 10 inches 16 voet, 10 duim 7 ${x}^{\prime }{y}^{″}$ x feet, y inches x voet, y duim 8 $45°{10}^{\prime }$ 45 degrees, 10 minutes 45 grade, 10 minute 9 $45°{10}^{\prime }{25}^{″}$ 45 degrees, 10 minutes, 25 seconds 45 grade, 10 minute, 25 sekondes 10 ${A}^{\prime }{B}^{\prime }$ A prime, B prime A priem, B priem 11 ${A}^{″}{B}^{″}$ A double prime, B double prime A dubbelpriem, B dubbelpriem 12 ${A}^{‴}{B}^{‴}$ A triple prime, B triple prime A trippelpriem, B trippelpriem 13 ${f}^{\prime }\left(x\right)$ f prime of x f priem van x 14 ${f}^{″}\left(x\right)$ f double prime of x f dubbelpriem van x 15 ${f}^{‴}\left(x\right)$ f triple prime of x f trippelpriem van x

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: CombinationPermutation_Auto.

 0 ${}_{n}C_{r}$ n C r n C r 1 ${}_{n}P_{r}$ n P r n P r 2 ${}_{10}C_{3}$ 10 C 3 10 C 3 3 ${}_{10}P_{3}$ 10 P 3 10 P 3

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: CombinationPermutation_ChoosePermute.

 0 ${}_{n}C_{r}$ n choose r n kombinasie r 1 ${}_{n}P_{r}$ n permute r n permutasie r 2 ${}_{10}C_{3}$ 10 choose 3 10 kombinasie 3 3 ${}_{10}P_{3}$ 10 permute 3 10 permutasie 3

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Bar_Auto.

 0 $\overline{f}$ f bar f makron 1 $\overline{f}\left(x\right)$ f bar of x f makron van x 2 $\overline{{f}_{1}}$ f sub 1, bar f onderskrif 1, makron 3 $\overline{{f}_{1}}\left(x\right)$ f sub 1, bar of x f onderskrif 1, makron van x 4 $\overline{z}$ z bar z makron 5 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 die herhalende dessimaal 0 punt gevolg deur herhalende syfer 3 6 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 die herhalende dessimaal 0 punt gevolg deur herhalende syfers 1 2 7 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 die herhalende dessimaal 2 punt gevolg deur herhalende syfers 1 3 4 8 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 die herhalende dessimaal punt 1 3 gevolg deur herhalende syfers 4 6 7 9 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 die herhalende dessimaal 2 5 punt 1 2 gevolg deur herhalende syfers 6 3 2 10 $z\text{}\overline{z}$ z, z bar z, z makron 11 $\overline{CD}$ the line segment C D die lynsegment C D 12 $\overline{{C}^{\prime }{D}^{\prime }}$ the line segment C prime D prime die lynsegment C priem D priem 13 $\overline{{C}^{″}{D}^{″}}$ the line segment C double prime D double prime die lynsegment C dubbelpriem D dubbelpriem 14 $\overline{{C}^{‴}{D}^{‴}}$ the line segment C triple prime D triple prime die lynsegment C trippelpriem D trippelpriem 15 $\stackrel{\text{def}}{=}$ is defined to be is gedeffiniëer as 16 $\left(f\circ g\right)\left(x\right)\stackrel{\text{def}}{=}f\left(g\left(x\right)\right)$ open paren, f composed with g, close paren, of x, is defined to be, f of, g of x links hakkie, f ring g, regs hakkie, van x, is gedeffiniëer as, f van, g van x 17 $\stackrel{?}{=}$ equals sign with question mark over it is gelyk aan teken met vraagteken oor hom 18 $x+2\stackrel{?}{=}4$ x plus 2 equals sign with question mark over it 4 x plus 2 is gelyk aan teken met vraagteken oor hom 4

## Afrikaans Clearspeak Part3Adornments rule tests. Locale: af, Style: Bar_Conjugate.

 0 $\overline{z}$ the complex conjugate of z die komplekse toegevoegde van z 1 $z\text{}\overline{z}$ z, the complex conjugate of z z, die komplekse toegevoegde van z 2 $\overline{3-2i}=3+2i$ the complex conjugate of 3 minus 2 i, equals 3 plus 2 i die komplekse toegevoegde van 3 minus 2 i, is gelyk aan 3 plus 2 i 3 $0.\overline{3}$ the repeating decimal 0 point followed by repeating digit 3 die herhalende dessimaal 0 punt gevolg deur herhalende syfer 3 4 $0.\overline{12}$ the repeating decimal 0 point followed by repeating digits 1 2 die herhalende dessimaal 0 punt gevolg deur herhalende syfers 1 2 5 $2.\overline{134}$ the repeating decimal 2 point followed by repeating digits 1 3 4 die herhalende dessimaal 2 punt gevolg deur herhalende syfers 1 3 4 6 $.13\overline{467}$ the repeating decimal point 1 3 followed by repeating digits 4 6 7 die herhalende dessimaal punt 1 3 gevolg deur herhalende syfers 4 6 7 7 $25.12\overline{632}$ the repeating decimal 2 5 point 1 2 followed by repeating digits 6 3 2 die herhalende dessimaal 2 5 punt 1 2 gevolg deur herhalende syfers 6 3 2

## Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_Auto.

 0 $\sqrt{2}$ the square root of 2 die vierkantswortel van 2 1 $3+\sqrt{2}$ 3 plus the square root of 2 3 plus die vierkantswortel van 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 plus of minus die vierkantswortel van 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 3 minus of plus die vierkantswortel van 2 4 $-\sqrt{2}$ the negative square root of 2 the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the square root of 2 3 minus die vierkantswortel van 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 3 plus the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 3 minus the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 3 plus, links hakkie, the negative square root of 2, regs hakkie 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 3 minus, links hakkie, the negative square root of 2, regs hakkie 10 $\sqrt{x+1}$ the square root of x plus 1 die vierkantswortel van x plus 1 11 $\sqrt{x}+1$ the square root of x, plus 1 die vierkantswortel van x, plus 1 12 $-\sqrt{x}$ the negative square root of x the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, close paren, squared links hakkie, die vierkantswortel van x, regs hakkie, kwadraat 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, close paren, squared negatiewe, links hakkie, die vierkantswortel van x, regs hakkie, kwadraat 15 ${\sqrt{x}}^{2}$ the square root of x, squared die vierkantswortel van x, kwadraat 16 $\sqrt{{x}^{2}}$ the square root of x squared die vierkantswortel van x kwadraat 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared die vierkantswortel van x kwadraat plus y kwadraat 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared die vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared die vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat 20 $\sqrt{\frac{1}{2}}$ the square root of one half die vierkantswortel van een helfte 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66 die vierkantswortel van, 23 oor 66 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 die vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a 24 $\sqrt[3]{y}$ the cube root of y die derdemagswortel van y 25 $\sqrt[4]{n}$ the fourth root of n die vierde wortel van n 26 $\sqrt[5]{35}$ the fifth root of 35 die vyfde wortel van 35 27 $\sqrt[9]{146}$ the ninth root of 146 die negende wortel van 146 28 $\sqrt[n]{d}$ the n-th root of d die n-de wortel van d 29 $\sqrt[m]{243}$ the m-th root of 243 die m-de wortel van 243 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power die i-de wortel van 2 tot die i-de mag 31 $\sqrt[j]{125}$ the j-th root of 125 die j-de wortel van 125 32 $-\sqrt[3]{y}$ negative the cube root of y negatiewe die derdemagswortel van y 33 $-\sqrt[4]{n}$ negative the fourth root of n negatiewe die vierde wortel van n

## Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_PosNegSqRoot.

 0 $\sqrt{2}$ the positive square root of 2 die positiewe vierkantswortel van 2 1 $3+\sqrt{2}$ 3 plus the positive square root of 2 3 plus die positiewe vierkantswortel van 2 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2 3 plus of minus die vierkantswortel van 2 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2 3 minus of plus die vierkantswortel van 2 4 $-\sqrt{2}$ the negative square root of 2 the negative square root of 2 5 $3-\sqrt{2}$ 3 minus the positive square root of 2 3 minus die positiewe vierkantswortel van 2 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2 3 plus the negative square root of 2 7 $3--\sqrt{2}$ 3 minus the negative square root of 2 3 minus the negative square root of 2 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, close paren 3 plus, links hakkie, the negative square root of 2, regs hakkie 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, close paren 3 minus, links hakkie, the negative square root of 2, regs hakkie 10 $\sqrt{x+1}$ the positive square root of x plus 1 die positiewe vierkantswortel van x plus 1 11 $\sqrt{x}+1$ the positive square root of x, plus 1 die positiewe vierkantswortel van x, plus 1 12 $-\sqrt{x}$ the negative square root of x the negative square root of x 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, close paren, squared links hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, close paren, squared links hakkie, the negative square root of x, regs hakkie, kwadraat 15 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the positive square root of x, close paren, squared negatiewe, links hakkie, die positiewe vierkantswortel van x, regs hakkie, kwadraat 16 ${\sqrt{x}}^{2}$ the positive square root of x, squared die positiewe vierkantswortel van x, kwadraat 17 $\sqrt{{x}^{2}}$ the positive square root of x squared die positiewe vierkantswortel van x kwadraat 18 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared die positiewe vierkantswortel van x kwadraat plus y kwadraat 19 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared die positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat 20 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared die positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat 21 $\sqrt{\frac{1}{2}}$ the positive square root of one half die positiewe vierkantswortel van een helfte 22 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66 die positiewe vierkantswortel van, 23 oor 66 23 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5 die positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5 24 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, and denominator 2 a die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, en noemer 2 a 25 $\sqrt[3]{y}$ the cube root of y die derdemagswortel van y 26 $\sqrt[4]{n}$ the fourth root of n die vierde wortel van n 27 $\sqrt[5]{35}$ the fifth root of 35 die vyfde wortel van 35 28 $\sqrt[9]{146}$ the ninth root of 146 die negende wortel van 146 29 $\sqrt[n]{d}$ the n-th root of d die n-de wortel van d 30 $\sqrt[m]{243}$ the m-th root of 243 die m-de wortel van 243 31 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power die i-de wortel van 2 tot die i-de mag 32 $\sqrt[j]{125}$ the j-th root of 125 die j-de wortel van 125 33 $-\sqrt[3]{y}$ negative the cube root of y negatiewe die derdemagswortel van y 34 $-\sqrt[4]{n}$ negative the fourth root of n negatiewe die vierde wortel van n

## Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_RootEnd.

 0 $\sqrt{2}$ the square root of 2, end root die vierkantswortel van 2, end wortel 1 $3+\sqrt{2}$ 3 plus the square root of 2, end root 3 plus die vierkantswortel van 2, end wortel 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 plus of minus die vierkantswortel van 2, end wortel 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 3 minus of plus die vierkantswortel van 2, end wortel 4 $-\sqrt{2}$ the negative square root of 2, end root the negative square root of 2, end wortel 5 $3-\sqrt{2}$ 3 minus the square root of 2, end root 3 minus die vierkantswortel van 2, end wortel 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 3 plus the negative square root of 2, end wortel 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 3 minus the negative square root of 2, end wortel 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie 10 $\sqrt{x+1}$ the square root of x plus 1, end root die vierkantswortel van x plus 1, end wortel 11 $\sqrt{x}+1$ the square root of x, end root, plus 1 die vierkantswortel van x, end wortel, plus 1 12 $-\sqrt{x}$ the negative square root of x, end root the negative square root of x, end wortel 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the square root of x, end root, close paren, squared links hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat 14 $-{\left(\sqrt{x}\right)}^{2}$ negative, open paren, the square root of x, end root, close paren, squared negatiewe, links hakkie, die vierkantswortel van x, end wortel, regs hakkie, kwadraat 15 ${\sqrt{x}}^{2}$ the square root of x, end root, squared die vierkantswortel van x, end wortel, kwadraat 16 $\sqrt{{x}^{2}}$ the square root of x squared, end root die vierkantswortel van x kwadraat, end wortel 17 $\sqrt{{x}^{2}+{y}^{2}}$ the square root of x squared plus y squared, end root die vierkantswortel van x kwadraat plus y kwadraat, end wortel 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the square root of, x sub 1, squared plus, x sub 2, squared, end root die vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root die vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel 20 $\sqrt{\frac{1}{2}}$ the square root of one half, end root die vierkantswortel van een helfte, end wortel 21 $\sqrt{\frac{23}{66}}$ the square root of, 23 over 66, end root die vierkantswortel van, 23 oor 66, end wortel 22 $\sqrt{\frac{x+1}{2x+5}}$ the square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root die vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a 24 $\sqrt[3]{y}$ the cube root of y, end root die derdemagswortel van y, end wortel 25 $\sqrt[4]{n}$ the fourth root of n, end root die vierde wortel van n, end wortel 26 $\sqrt[5]{35}$ the fifth root of 35, end root die vyfde wortel van 35, end wortel 27 $\sqrt[9]{146}$ the ninth root of 146, end root die negende wortel van 146, end wortel 28 $\sqrt[n]{d}$ the n-th root of d, end root die n-de wortel van d, end wortel 29 $\sqrt[m]{243}$ the m-th root of 243, end root die m-de wortel van 243, end wortel 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root die i-de wortel van 2 tot die i-de mag, end wortel 31 $\sqrt[j]{125}$ the j-th root of 125, end root die j-de wortel van 125, end wortel 32 $-\sqrt[3]{y}$ negative the cube root of y, end root negatiewe die derdemagswortel van y, end wortel 33 $-\sqrt[4]{n}$ negative the fourth root of n, end root negatiewe die vierde wortel van n, end wortel

## Afrikaans Clearspeak Roots rule tests. Locale: af, Style: Roots_PosNegSqRootEnd.

 0 $\sqrt{2}$ the positive square root of 2, end root die positiewe vierkantswortel van 2, end wortel 1 $3+\sqrt{2}$ 3 plus the positive square root of 2, end root 3 plus die positiewe vierkantswortel van 2, end wortel 2 $3±\sqrt{2}$ 3 plus or minus the square root of 2, end root 3 plus of minus die vierkantswortel van 2, end wortel 3 $3\mp \sqrt{2}$ 3 minus or plus the square root of 2, end root 3 minus of plus die vierkantswortel van 2, end wortel 4 $-\sqrt{2}$ the negative square root of 2, end root the negative square root of 2, end wortel 5 $3-\sqrt{2}$ 3 minus the positive square root of 2, end root 3 minus die positiewe vierkantswortel van 2, end wortel 6 $3+-\sqrt{2}$ 3 plus the negative square root of 2, end root 3 plus the negative square root of 2, end wortel 7 $3--\sqrt{2}$ 3 minus the negative square root of 2, end root 3 minus the negative square root of 2, end wortel 8 $3+\left(-\sqrt{2}\right)$ 3 plus, open paren, the negative square root of 2, end root, close paren 3 plus, links hakkie, the negative square root of 2, end wortel, regs hakkie 9 $3-\left(-\sqrt{2}\right)$ 3 minus, open paren, the negative square root of 2, end root, close paren 3 minus, links hakkie, the negative square root of 2, end wortel, regs hakkie 10 $\sqrt{x+1}$ the positive square root of x plus 1, end root die positiewe vierkantswortel van x plus 1, end wortel 11 $\sqrt{x}+1$ the positive square root of x, end root, plus 1 die positiewe vierkantswortel van x, end wortel, plus 1 12 $-\sqrt{x}$ the negative square root of x, end root the negative square root of x, end wortel 13 ${\left(\sqrt{x}\right)}^{2}$ open paren, the positive square root of x, end root, close paren, squared links hakkie, die positiewe vierkantswortel van x, end wortel, regs hakkie, kwadraat 14 ${\left(-\sqrt{x}\right)}^{2}$ open paren, the negative square root of x, end root, close paren, squared links hakkie, the negative square root of x, end wortel, regs hakkie, kwadraat 15 ${\sqrt{x}}^{2}$ the positive square root of x, end root, squared die positiewe vierkantswortel van x, end wortel, kwadraat 16 $\sqrt{{x}^{2}}$ the positive square root of x squared, end root die positiewe vierkantswortel van x kwadraat, end wortel 17 $\sqrt{{x}^{2}+{y}^{2}}$ the positive square root of x squared plus y squared, end root die positiewe vierkantswortel van x kwadraat plus y kwadraat, end wortel 18 $\sqrt{{x}_{1}{}^{2}+{x}_{2}{}^{2}}$ the positive square root of, x sub 1, squared plus, x sub 2, squared, end root die positiewe vierkantswortel van, x onderskrif 1, kwadraat plus, x onderskrif 2, kwadraat, end wortel 19 $\sqrt{{\left({x}_{2}-{x}_{1}\right)}^{2}+{\left({y}_{2}-{y}_{1}\right)}^{2}}$ the positive square root of, open paren, x sub 2, minus, x sub 1, close paren, squared plus, open paren, y sub 2, minus, y sub 1, close paren, squared, end root die positiewe vierkantswortel van, links hakkie, x onderskrif 2, minus, x onderskrif 1, regs hakkie, kwadraat plus, links hakkie, y onderskrif 2, minus, y onderskrif 1, regs hakkie, kwadraat, end wortel 20 $\sqrt{\frac{1}{2}}$ the positive square root of one half, end root die positiewe vierkantswortel van een helfte, end wortel 21 $\sqrt{\frac{23}{66}}$ the positive square root of, 23 over 66, end root die positiewe vierkantswortel van, 23 oor 66, end wortel 22 $\sqrt{\frac{x+1}{2x+5}}$ the positive square root of, the fraction with numerator x plus 1, and denominator 2 x, plus 5, end root die positiewe vierkantswortel van, die breuk met teller x plus 1, en noemer 2 x, plus 5, end wortel 23 $\frac{-b±\sqrt{{b}^{2}-4ac}}{2a}$ the fraction with numerator negative b plus or minus the square root of b squared minus 4 a c, end root, and denominator 2 a die breuk met teller negatiewe b plus of minus die vierkantswortel van b kwadraat minus 4 a c, end wortel, en noemer 2 a 24 $\sqrt[3]{y}$ the cube root of y, end root die derdemagswortel van y, end wortel 25 $\sqrt[4]{n}$ the fourth root of n, end root die vierde wortel van n, end wortel 26 $\sqrt[5]{35}$ the fifth root of 35, end root die vyfde wortel van 35, end wortel 27 $\sqrt[9]{146}$ the ninth root of 146, end root die negende wortel van 146, end wortel 28 $\sqrt[n]{d}$ the n-th root of d, end root die n-de wortel van d, end wortel 29 $\sqrt[m]{243}$ the m-th root of 243, end root die m-de wortel van 243, end wortel 30 $\sqrt[i]{{2}^{i}}$ the i-th root of 2 to the i-th power, end root die i-de wortel van 2 tot die i-de mag, end wortel 31 $\sqrt[j]{125}$ the j-th root of 125, end root die j-de wortel van 125, end wortel 32 $-\sqrt[3]{y}$ negative the cube root of y, end root negatiewe die derdemagswortel van y, end wortel 33 $-\sqrt[4]{n}$ negative the fourth root of n, end root negatiewe die vierde wortel van n, end wortel

## Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_Auto.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 die versameling van alle x sodat, die absolute waarde van x, groter as 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7 3 the set of all x in the natural numbers such that x is an even number die versameling van alle x in die natuurlike getalle sodat x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 die versameling 1 komma 2 komma 3 5 $\left\{1,112,\text{}1,253\right\}$ the set 1 comma 112 comma 1 comma 253 die versameling 1 komma 112 komma 1 komma 253

## Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_woAll.

 0 $\left\{x\in ℤ|2 the set of x in the integers such that 2 is less than x is less than 7 die versameling van x in die heelgetalle sodat 2 kleiner as x kleiner as 7 1 $\left\{x||x|>2\right\}$ the set of x such that, the absolute value of x, is greater than 2 die versameling van x sodat, die absolute waarde van x, groter as 2 2 $\left\{x\in ℤ:2 the set of x in the integers such that 2 is less than x is less than 7 die versameling van x in die heelgetalle sodat 2 kleiner as x kleiner as 7 3 $\left\{1,\text{}2,\text{}\text{}3\right\}$ the set 1 comma 2 comma 3 die versameling 1 komma 2 komma 3 4 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ the set 1 comma 112 comma 1 comma 253 die versameling 1 komma 112 komma 1 komma 253

## Afrikaans Clearspeak SetsEnclosedInSetBrackets rule tests. Locale: af, Style: Sets_SilentBracket.

 0 $\left\{x\in ℤ|2 the set of all x in the integers such that 2 is less than x is less than 7 die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7 1 $\left\{x||x|>2\right\}$ the set of all x such that, the absolute value of x, is greater than 2 die versameling van alle x sodat, die absolute waarde van x, groter as 2 2 $\left\{x\in ℤ:2 the set of all x in the integers such that 2 is less than x is less than 7 die versameling van alle x in die heelgetalle sodat 2 kleiner as x kleiner as 7 3 the set of all x in the natural numbers such that x is an even number die versameling van alle x in die natuurlike getalle sodat x is an even number 4 $\left\{1,\text{}2,\text{}\text{}3\right\}$ 1 comma 2 comma 3 1 komma 2 komma 3 5 $\left\{1,\text{}112,\text{}1,\text{}253\right\}$ 1 comma 112 comma 1 comma 253 1 komma 112 komma 1 komma 253

## Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_Auto.

 0 $\mathrm{sin}x$ sine x sinus x 1 $\mathrm{cos}x$ cosine x kosinus x 2 $\mathrm{tan}\theta$ tangent theta tangens theta 3 $\mathrm{sec}\theta$ secant theta sekans theta 4 $\mathrm{csc}x$ cosecant x kosekans x 5 $\mathrm{cot}x$ cotangent x kotangens x 6 ${\mathrm{sin}}^{2}x$ sine squared x sinus kwadraat x 7 ${\mathrm{cos}}^{3}x$ cosine cubed x kosinus tot die mag drie x 8 ${\mathrm{tan}}^{2}x$ tangent squared x tangens kwadraat x 9 ${\mathrm{sec}}^{3}x$ secant cubed x sekans tot die mag drie x 10 ${\mathrm{csc}}^{2}x$ cosecant squared x kosekans kwadraat x 11 ${\mathrm{cot}}^{2}x$ cotangent squared x kotangens kwadraat x 12 $\mathrm{sin}2\pi$ sine 2 pi sinus 2 pi 13 $\mathrm{sin}\left(\pi k+\frac{\pi }{2}\right)$ the sine of, open paren, pi k, plus, pi over 2, close paren die sinus van, links hakkie, pi k, plus, pi oor 2, regs hakkie 14 $\mathrm{cos}\frac{\pi }{2}$ the cosine of, pi over 2 die kosinus van, pi oor 2 15 $\mathrm{sin}\frac{\pi }{2}$ the sine of, pi over 2 die sinus van, pi oor 2 16 $\frac{\mathrm{sin}\pi }{2}$ sine pi over 2 sinus pi oor 2 17 $\frac{2}{\mathrm{sin}\pi }$ 2 over sine pi 2 oor sinus pi 18 $\frac{\mathrm{sin}\frac{\pi }{2}}{3}$ the fraction with numerator, the sine of, pi over 2, and denominator 3 die breuk met teller, die sinus van, pi oor 2, en noemer 3 19 $\mathrm{tan}\left(-\pi \right)$ tangent negative pi tangens negatiewe pi 20 $\mathrm{sin}\left(x+\pi \right)$ the sine of, open paren, x plus pi, close paren die sinus van, links hakkie, x plus pi, regs hakkie 21 $\mathrm{cos}\left(x+\frac{\pi }{2}\right)$ the cosine of, open paren, x plus, pi over 2, close paren die kosinus van, links hakkie, x plus, pi oor 2, regs hakkie 22 $\mathrm{cos}\left(\frac{\pi }{2}+x\right)$ the cosine of, open paren, pi over 2, plus x, close paren die kosinus van, links hakkie, pi oor 2, plus x, regs hakkie 23 ${\mathrm{sin}}^{2}x+{\mathrm{cos}}^{2}x=1$ sine squared x, plus, cosine squared x, equals 1 sinus kwadraat x, plus, kosinus kwadraat x, is gelyk aan 1 24 ${\mathrm{sin}}^{4}x$ the fourth power of sine x die vierde mag van sinus x 25 ${\mathrm{cos}}^{5}x$ the fifth power of cosine x die vyfde mag van kosinus x 26 ${\mathrm{tan}}^{n}x$ the n-th power of tangent x die n-de mag van tangens x 27 $\frac{\mathrm{sin}x}{\mathrm{cos}x}$ sine x over cosine x sinus x oor kosinus x 28 $\mathrm{tan}35°$ tangent 35 degrees tangens 35 grade 29 $\mathrm{tan}\left(\angle DEF\right)$ the tangent of, open paren, angle D E F, close paren die tangens van, links hakkie, hoek D E F, regs hakkie 30 $\mathrm{tan}\left(\angle D\right)$ the tangent of, open paren, angle D, close paren die tangens van, links hakkie, hoek D, regs hakkie 31 $\mathrm{sin}\left(x+y\right)=\mathrm{sin}x\mathrm{cos}y+\mathrm{cos}x\mathrm{sin}y$ the sine of, open paren, x plus y, close paren, equals, sine x cosine y, plus, cosine x sine y die sinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, sinus x kosinus y, plus, kosinus x sinus y 32 $\mathrm{cos}\left(x+y\right)=\mathrm{cos}x\mathrm{cos}y-\mathrm{sin}x\mathrm{sin}y$ the cosine of, open paren, x plus y, close paren, equals, cosine x cosine y, minus, sine x sine y die kosinus van, links hakkie, x plus y, regs hakkie, is gelyk aan, kosinus x kosinus y, minus, sinus x sinus y 33 $\mathrm{tan}\left(x+y\right)=\frac{\mathrm{tan}x-\mathrm{tan}y}{1-\mathrm{tan}x\mathrm{tan}y}$ the tangent of, open paren, x plus y, close paren, equals, the fraction with numerator tangent x minus tangent y, and denominator 1 minus, tangent x tangent y die tangens van, links hakkie, x plus y, regs hakkie, is gelyk aan, die breuk met teller tangens x minus tangens y, en noemer 1 minus, tangens x tangens y 34 $\mathrm{tan}\left(\frac{\pi }{6}+\frac{2\pi }{3}\right)=\frac{\mathrm{tan}\frac{\pi }{6}-\mathrm{tan}\frac{2\pi }{3}}{1-\mathrm{tan}\frac{\pi }{6}\mathrm{tan}\frac{2\pi }{3}}$ the tangent of, open paren, pi over 6, plus, 2 pi over 3, close paren, equals, the fraction with numerator, the tangent of, pi over 6, minus, the tangent of, 2 pi over 3, and denominator 1 minus, the tangent of, pi over 6, the tangent of, 2 pi over 3 die tangens van, links hakkie, pi oor 6, plus, 2 pi oor 3, regs hakkie, is gelyk aan, die breuk met teller, die tangens van, pi oor 6, minus, die tangens van, 2 pi oor 3, en noemer 1 minus, die tangens van, pi oor 6, die tangens van, 2 pi oor 3 35 $\mathrm{tan}2x=\frac{2\mathrm{tan}x}{1-{\mathrm{tan}}^{2}x}$ tangent 2 x, equals, the fraction with numerator 2 tangent x, and denominator 1 minus, tangent squared x tangens 2 x, is gelyk aan, die breuk met teller 2 tangens x, en noemer 1 minus, tangens kwadraat x 36 $\mathrm{cos}2x=2{\mathrm{cos}}^{2}x-1$ cosine 2 x, equals 2, cosine squared x, minus 1 kosinus 2 x, is gelyk aan 2, kosinus kwadraat x, minus 1 37 $\mathrm{sin}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{2}}$ the sine of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 2 die sinus van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 2 38 $\mathrm{tan}\frac{x}{2}=±\sqrt{\frac{1-\mathrm{cos}x}{1+\mathrm{cos}x}}$ the tangent of, x over 2, equals plus or minus the square root of, the fraction with numerator 1 minus cosine x, and denominator 1 plus cosine x die tangens van, x oor 2, is gelyk aan plus of minus die vierkantswortel van, die breuk met teller 1 minus kosinus x, en noemer 1 plus kosinus x 39 $\mathrm{cos}x\mathrm{cos}y=2\mathrm{cos}\frac{x+y}{2}\mathrm{cos}\frac{x-y}{2}$ cosine x cosine y, equals 2, the cosine of, the fraction with numerator x plus y, and denominator 2, the cosine of, the fraction with numerator x minus y, and denominator 2 kosinus x kosinus y, is gelyk aan 2, die kosinus van, die breuk met teller x plus y, en noemer 2, die kosinus van, die breuk met teller x minus y, en noemer 2 40 ${\mathrm{sin}}^{-1}x$ the inverse sine of x die inverse sinus van x 41 ${\mathrm{cos}}^{-1}x$ the inverse cosine of x die inverse kosinus van x 42 ${\mathrm{tan}}^{-1}x$ the inverse tangent of x die inverse tangens van x 43 ${\mathrm{cot}}^{-1}x$ the inverse cotangent of x die inverse kotangens van x 44 ${\mathrm{sec}}^{-1}x$ the inverse secant of x die inverse sekans van x 45 ${\mathrm{csc}}^{-1}x$ the inverse cosecant of x die inverse kosekans van x 46 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ the inverse sine of, the fraction with numerator the square root of 2, and denominator 2 die inverse sinus van, die breuk met teller die vierkantswortel van 2, en noemer 2 47 ${\mathrm{cos}}^{-1}\frac{1}{2}$ the inverse cosine of one half die inverse kosinus van een helfte 48 ${\mathrm{tan}}^{-1}17$ the inverse tangent of 17 die inverse tangens van 17 49 ${\mathrm{cot}}^{-1}32$ the inverse cotangent of 32 die inverse kotangens van 32 50 ${\mathrm{sec}}^{-1}100$ the inverse secant of 100 die inverse sekans van 100 51 ${\mathrm{csc}}^{-1}85$ the inverse cosecant of 85 die inverse kosekans van 85 52 ${\mathrm{sin}}^{-1}\left(-x\right)$ the inverse sine of negative x die inverse sinus van negatiewe x 53 ${\mathrm{cos}}^{-1}\left(-x\right)$ the inverse cosine of negative x die inverse kosinus van negatiewe x 54 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ the inverse tangent of, open paren, negative x plus 12, close paren die inverse tangens van, links hakkie, negatiewe x plus 12, regs hakkie 55 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ the inverse cotangent of, open paren, negative x minus 1, close paren die inverse kotangens van, links hakkie, negatiewe x minus 1, regs hakkie 56 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ the inverse sine of sine 0 die inverse sinus van sinus 0 57 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ the inverse cosecant of cosecant x die inverse kosekans van kosekans x 58 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, the inverse cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, die inverse kosinus van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 59 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, the inverse cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, negatiewe, die inverse kosinus van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 60 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ the inverse sine of, open paren, the cosine of, pi over 4, close paren die inverse sinus van, links hakkie, die kosinus van, pi oor 4, regs hakkie 61 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, the inverse cosine of one half sinus, die inverse kosinus van een helfte 62 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, the inverse tangent of 1 sinus, die inverse tangens van 1 63 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, the inverse tangent of 1, close paren die sinus van, links hakkie, negatiewe, die inverse tangens van 1, regs hakkie 64 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, the inverse tangent of negative 1, close paren die sinus van, links hakkie, negatiewe, die inverse tangens van negatiewe 1, regs hakkie 65 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ the inverse secant of secant x die inverse sekans van sekans x 66 $\mathrm{arcsin}x$ arc sine x boog sinus x 67 $\mathrm{arccos}x$ arc cosine x boog kosinus x 68 $\mathrm{arctan}x$ arc tangent x boog tangens x 69 $\mathrm{sinh}x$ hyperbolic sine of x hiperboliese sinus van x 70 $\mathrm{cosh}x$ hyperbolic cosine of x hiperboliese kosinus van x 71 $\mathrm{tanh}x$ hyperbolic tangent of x hiperboliese tangens van x 72 $\mathrm{coth}x$ hyperbolic cotangent of x hiperboliese kotangens van x 73 $\mathrm{sech}x$ hyperbolic secant of x hiperboliese sekans van x 74 $\mathrm{csch}x$ hyperbolic cosecant of x hiperboliese kosekans van x 75 ${\mathrm{sinh}}^{-1}x$ the inverse hyperbolic sine of x die inverse hiperboliese sinus van x 76 ${\mathrm{cosh}}^{-1}x$ the inverse hyperbolic cosine of x die inverse hiperboliese kosinus van x 77 ${\mathrm{tanh}}^{-1}x$ the inverse hyperbolic tangent of x die inverse hiperboliese tangens van x 78 ${\mathrm{coth}}^{-1}x$ the inverse hyperbolic cotangent of x die inverse hiperboliese kotangens van x 79 ${\mathrm{sech}}^{-1}x$ the inverse hyperbolic secant of x die inverse hiperboliese sekans van x 80 ${\mathrm{csch}}^{-1}x$ the inverse hyperbolic cosecant of x die inverse hiperboliese kosekans van x 81 $\mathrm{sinh}\left({\mathrm{sinh}}^{-1}x\right)$ hyperbolic sine of, the inverse hyperbolic sine of x hiperboliese sinus van, die inverse hiperboliese sinus van x 82 $\mathrm{cosh}\left({\mathrm{cosh}}^{-1}x\right)$ hyperbolic cosine of, the inverse hyperbolic cosine of x hiperboliese kosinus van, die inverse hiperboliese kosinus van x 83 $\mathrm{tanh}\left({\mathrm{tanh}}^{-1}x\right)$ hyperbolic tangent of, the inverse hyperbolic tangent of x hiperboliese tangens van, die inverse hiperboliese tangens van x 84 $\mathrm{coth}\left({\mathrm{coth}}^{-1}x\right)$ hyperbolic cotangent of, the inverse hyperbolic cotangent of x hiperboliese kotangens van, die inverse hiperboliese kotangens van x 85 ${\mathrm{sinh}}^{-1}\left(\mathrm{sinh}x\right)$ the inverse hyperbolic sine of, hyperbolic sine of x die inverse hiperboliese sinus van, hiperboliese sinus van x 86 ${\mathrm{cosh}}^{-1}\left(\mathrm{cosh}x\right)$ the inverse hyperbolic cosine of, hyperbolic cosine of x die inverse hiperboliese kosinus van, hiperboliese kosinus van x 87 ${\mathrm{tanh}}^{-1}\left(\mathrm{tanh}x\right)$ the inverse hyperbolic tangent of, hyperbolic tangent of x die inverse hiperboliese tangens van, hiperboliese tangens van x 88 ${\mathrm{coth}}^{-1}\left(\mathrm{coth}x\right)$ the inverse hyperbolic cotangent of, hyperbolic cotangent of x die inverse hiperboliese kotangens van, hiperboliese kotangens van x

## Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_Auto:Roots_RootEnd.

 0 $\mathrm{sin}\left(-\frac{\pi }{8}\right)=-\frac{1}{2}\sqrt{2-\sqrt{2}}$ the sine of, open paren, negative, pi over 8, close paren, equals negative one half the square root of 2 minus the square root of 2, end root, end root die sinus van, links hakkie, negatiewe, pi oor 8, regs hakkie, is gelyk aan negatiewe een helfte die vierkantswortel van 2 minus die vierkantswortel van 2, end wortel, end wortel 1 $\mathrm{tan}\frac{3\pi }{8}=\frac{\sqrt{\sqrt{2}+1}}{\sqrt{\sqrt{2}-1}}$ the tangent of, 3 pi over 8, equals, the fraction with numerator the square root of, the square root of 2, end root, plus 1, end root, and denominator the square root of, the square root of 2, end root, minus 1, end root die tangens van, 3 pi oor 8, is gelyk aan, die breuk met teller die vierkantswortel van, die vierkantswortel van 2, end wortel, plus 1, end wortel, en noemer die vierkantswortel van, die vierkantswortel van 2, end wortel, minus 1, end wortel 2 $\mathrm{tan}\frac{\pi }{12}=\frac{1}{2}\sqrt{2-\sqrt{3}}$ the tangent of, pi over 12, equals one half the square root of 2 minus the square root of 3, end root, end root die tangens van, pi oor 12, is gelyk aan een helfte die vierkantswortel van 2 minus die vierkantswortel van 3, end wortel, end wortel

## Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_TrigInverse.

 0 ${\mathrm{sin}}^{-1}x$ sine inverse of x sinus inverse van x 1 ${\mathrm{cos}}^{-1}x$ cosine inverse of x kosinus inverse van x 2 ${\mathrm{tan}}^{-1}x$ tangent inverse of x tangens inverse van x 3 ${\mathrm{cot}}^{-1}x$ cotangent inverse of x kotangens inverse van x 4 ${\mathrm{sec}}^{-1}x$ secant inverse of x sekans inverse van x 5 ${\mathrm{csc}}^{-1}x$ cosecant inverse of x kosekans inverse van x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ sine inverse of, the fraction with numerator the square root of 2, and denominator 2 sinus inverse van, die breuk met teller die vierkantswortel van 2, en noemer 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ cosine inverse of one half kosinus inverse van een helfte 8 ${\mathrm{tan}}^{-1}17$ tangent inverse of 17 tangens inverse van 17 9 ${\mathrm{cot}}^{-1}32$ cotangent inverse of 32 kotangens inverse van 32 10 ${\mathrm{sec}}^{-1}100$ secant inverse of 100 sekans inverse van 100 11 ${\mathrm{csc}}^{-1}85$ cosecant inverse of 85 kosekans inverse van 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ sine inverse of negative x sinus inverse van negatiewe x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ cosine inverse of negative x kosinus inverse van negatiewe x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ tangent inverse of, open paren, negative x plus 12, close paren tangens inverse van, links hakkie, negatiewe x plus 12, regs hakkie 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ cotangent inverse of, open paren, negative x minus 1, close paren kotangens inverse van, links hakkie, negatiewe x minus 1, regs hakkie 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ sine inverse of sine 0 sinus inverse van sinus 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ cosecant inverse of cosecant x kosekans inverse van kosekans x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, cosine inverse of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, kosinus inverse van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, cosine inverse of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, negatiewe, kosinus inverse van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ sine inverse of, open paren, the cosine of, pi over 4, close paren sinus inverse van, links hakkie, die kosinus van, pi oor 4, regs hakkie 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, cosine inverse of one half sinus, kosinus inverse van een helfte 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, tangent inverse of 1 sinus, tangens inverse van 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, tangent inverse of 1, close paren die sinus van, links hakkie, negatiewe, tangens inverse van 1, regs hakkie 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, tangent inverse of negative 1, close paren die sinus van, links hakkie, negatiewe, tangens inverse van negatiewe 1, regs hakkie 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ secant inverse of secant x sekans inverse van sekans x

## Afrikaans Clearspeak Trigometry rule tests. Locale: af, Style: Trig_ArcTrig.

 0 ${\mathrm{sin}}^{-1}x$ arc sine x boog sinus x 1 ${\mathrm{cos}}^{-1}x$ arc cosine x boog kosinus x 2 ${\mathrm{tan}}^{-1}x$ arc tangent x boog tangens x 3 ${\mathrm{cot}}^{-1}x$ arc cotangent x boog kotangens x 4 ${\mathrm{sec}}^{-1}x$ arc secant x boog sekans x 5 ${\mathrm{csc}}^{-1}x$ arc cosecant x boog kosekans x 6 ${\mathrm{sin}}^{-1}\frac{\sqrt{2}}{2}$ arc sine of, the fraction with numerator the square root of 2, and denominator 2 boog sinus van, die breuk met teller die vierkantswortel van 2, en noemer 2 7 ${\mathrm{cos}}^{-1}\frac{1}{2}$ arc cosine one half boog kosinus een helfte 8 ${\mathrm{tan}}^{-1}17$ arc tangent 17 boog tangens 17 9 ${\mathrm{cot}}^{-1}32$ arc cotangent 32 boog kotangens 32 10 ${\mathrm{sec}}^{-1}100$ arc secant 100 boog sekans 100 11 ${\mathrm{csc}}^{-1}85$ arc cosecant 85 boog kosekans 85 12 ${\mathrm{sin}}^{-1}\left(-x\right)$ arc sine negative x boog sinus negatiewe x 13 ${\mathrm{cos}}^{-1}\left(-x\right)$ arc cosine negative x boog kosinus negatiewe x 14 ${\mathrm{tan}}^{-1}\left(-x+12\right)$ arc tangent of, open paren, negative x plus 12, close paren boog tangens van, links hakkie, negatiewe x plus 12, regs hakkie 15 ${\mathrm{cot}}^{-1}\left(-x-1\right)$ arc cotangent of, open paren, negative x minus 1, close paren boog kotangens van, links hakkie, negatiewe x minus 1, regs hakkie 16 ${\mathrm{sin}}^{-1}\left(\mathrm{sin}0\right)$ arc sine, sine 0 boog sinus, sinus 0 17 ${\mathrm{csc}}^{-1}\left(\mathrm{csc}x\right)$ arc cosecant, cosecant x boog kosekans, kosekans x 18 $\mathrm{cos}\left({\mathrm{cos}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, arc cosine of, open paren, negative, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, boog kosinus van, links hakkie, negatiewe, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 19 $\mathrm{cos}\left(-{\mathrm{cos}}^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$ the cosine of, open paren, negative, arc cosine of, open paren, the fraction with numerator the square root of 2, and denominator 2, close paren, close paren die kosinus van, links hakkie, negatiewe, boog kosinus van, links hakkie, die breuk met teller die vierkantswortel van 2, en noemer 2, regs hakkie, regs hakkie 20 ${\mathrm{sin}}^{-1}\left(\mathrm{cos}\frac{\pi }{4}\right)$ arc sine of, open paren, the cosine of, pi over 4, close paren boog sinus van, links hakkie, die kosinus van, pi oor 4, regs hakkie 21 $\mathrm{sin}\left({\mathrm{cos}}^{-1}\frac{1}{2}\right)$ sine, arc cosine one half sinus, boog kosinus een helfte 22 $\mathrm{sin}\left({\mathrm{tan}}^{-1}1\right)$ sine, arc tangent 1 sinus, boog tangens 1 23 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}1\right)$ the sine of, open paren, negative, arc tangent 1, close paren die sinus van, links hakkie, negatiewe, boog tangens 1, regs hakkie 24 $\mathrm{sin}\left(-{\mathrm{tan}}^{-1}\left(-1\right)\right)$ the sine of, open paren, negative, arc tangent negative 1, close paren die sinus van, links hakkie, negatiewe, boog tangens negatiewe 1, regs hakkie 25 ${\mathrm{sec}}^{-1}\left(\mathrm{sec}x\right)$ arc secant, secant x boog sekans, sekans x

## Afrikaans Clearspeak Units tests. Locale: af, Style: Verbose.

 0 ${\mathrm{in}}^{2}$ square inches kwadraat duim 1 ${s}^{2}$ seconds to the second power kwadraat sekondes 2 ${m}^{2}$ square meters kwadraat meter 3 ${\mathrm{in}}^{3}$ cubic inches kubiek duim 4 ${s}^{3}$ seconds to the third power kubiek sekondes 5 ${m}^{3}$ cubic meters kubiek meter 6 ${\mathrm{in}}^{-1}$ reciprocal inches resiprook duim 7 ${\mathrm{in}}^{-1}{\mathrm{mm}}^{-1}$ reciprocal inches per millimeter resiprook duim per millimeter 8 $\frac{\mathrm{in}}{\mathrm{mm}}$ inches per millimeter duim per millimeter 9 $\mathrm{km}$ kilometers kilometer 10 $\mathrm{A}$ amperes ampere 11 $\mathrm{\Omega }$ ohms ohm 12 $\mathrm{k\Omega }$ kilohms kilohm 13 $\mathrm{°C}$ Celsius Selsius 14 $\mathrm{min}\mathrm{min}$ min of minutes min van minute 15 $3\mathrm{km}$ 3 kilometers 3 kilometer 16 $\mathrm{km}+\mathrm{s}$ kilometers plus seconds kilometer plus sekondes 17 ${\mathrm{km}}^{2}$ square kilometers kwadraat kilometer 18 ${\mathrm{m}}^{3}$ cubic meters kubiek meter 19 ${\mathrm{km}}^{4}$ kilometers to the fourth power kilometer tot die vierde mag 20 ${\mathrm{m}}^{-1}$ reciprocal meters resiprook meter 21 $\mathrm{s}{\mathrm{m}}^{-1}$ seconds per meter sekondes per meter 22 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power sekondes per meter tot die negatiewe 1 mag 23 ${\frac{\mathrm{s}}{\mathrm{m}}}^{-1}$ seconds per meter to the negative 1 power sekondes per meter tot die negatiewe 1 mag 24 $3{\mathrm{m}}^{-1}$ 3 reciprocal meters 3 resiprook meter 25 $\frac{\mathrm{km}}{\mathrm{h}}$ kilometers per hour kilometer per uur 26 $\mathrm{N}\frac{\mathrm{km}}{\mathrm{h}}$ Newtons kilometers per hour Newton kilometer per uur 27 $\frac{m}{\mathrm{km}}$ m over kilometers m oor kilometer 28 $3\mathrm{km}\mathrm{h}$ 3 kilometers hours 3 kilometer ure 29 $\mathrm{s}3m\mathrm{km}\mathrm{h}$ seconds 3 m kilometers hours sekondes 3 m kilometer ure 30 $\mathrm{km}{\mathrm{s}}^{2}3m\mathrm{km}\mathrm{h}$ kilometers seconds to the second power 3 m kilometers hours kilometer kwadraat sekondes 3 m kilometer ure 31 $3m\mathrm{km}\mathrm{h}\frac{N}{{\mathrm{s}}^{2}}$ 3 m kilometers hours the fraction with numerator N and denominator seconds to the second power 3 m kilometer ure die breuk met teller N en noemer kwadraat sekondes 32 $3m\mathrm{km}\mathrm{h}\frac{\mathrm{N}}{{\mathrm{s}}^{2}}$ 3 m kilometers hours Newtons per second to the second power 3 m kilometer ure Newton per kwadraat sekonde 33 $4\mathrm{mm}$ 4 millimeters 4 millimeter 34 $1\mathrm{mm}$ 1 millimeter 1 millimeter 35 $4\mathrm{mm}$ 4 millimeters 4 millimeter 36 $1\mathrm{mm}$ 1 millimeter 1 millimeter 37 $ms$ meters seconds meter sekondes 38 $ms$ m seconds m sekondes 39 $ms$ meters s meter s 40 $ms$ meters seconds meter sekondes 41 $ms$ m seconds m sekondes 42 $ms$ meters s meter s 43 $msl$ meters seconds liters meter sekondes lieters 44 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile 45 $8000\mathrm{li}=8000\mathrm{li.}=8000\mathrm{links}=320\mathrm{rd}=320\mathrm{rd.}=320\mathrm{rods}=80\mathrm{ch}=80\mathrm{ch.}=80\mathrm{chains}=8\mathrm{fur}=8\mathrm{fur.}=8\mathrm{furlongs}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 8000 links equals 8000 links equals 8000 links equals 320 rods equals 320 rods equals 320 rods equals 80 chains equals 80 chains equals 80 chains equals 8 furlongs equals 8 furlongs equals 8 furlongs equals 1 mile equals 1 mile equals 1 mile 8000 links is gelyk aan 8000 links is gelyk aan 8000 links is gelyk aan 320 stawe is gelyk aan 320 stawe is gelyk aan 320 rods is gelyk aan 80 kettings is gelyk aan 80 kettings is gelyk aan 80 chains is gelyk aan 8 furlong is gelyk aan 8 furlong is gelyk aan 8 furlongs is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile 46 $43560\mathrm{sq ft}=43560\mathrm{sq. ft.}=43560{\mathrm{ft}}^{2}={{43560}^{\prime }}^{2}=43560\mathrm{square feet}=4840\mathrm{sq yd}=4840\mathrm{sq. yd.}=4840{\mathrm{yd}}^{2}=4840\mathrm{square yards}=160\mathrm{sq rd}=160\mathrm{sq. rd.}=160{\mathrm{rd}}^{2}=160\mathrm{square rods}=1\mathrm{ac}=1\mathrm{ac.}=1\mathrm{acre}=\frac{1}{640}\mathrm{sq mi}=\frac{1}{640}\mathrm{sq. mi.}=\frac{1}{640}{\mathrm{mi}}^{2}=\frac{1}{640}\mathrm{square miles}$ 43560 square feet equals 43560 square feet equals 43560 square feet equals 43560 feet squared equals 43560 square feet equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 4840 square yards equals 160 square rods equals 160 square rods equals 160 square rods equals 160 square rods equals 1 acre equals 1 acre equals 1 acre equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles equals 1 over 640 square miles 43560 vierkant 'n voet is gelyk aan 43560 vierkant 'n voet is gelyk aan 43560 kwadraat voet is gelyk aan 43560 voet kwadraat is gelyk aan 43560 square feet is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 vierkant 'n jaart is gelyk aan 4840 kwadraat jaart is gelyk aan 4840 square yards is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 vierkant 'n staaf is gelyk aan 160 kwadraat stawe is gelyk aan 160 square rods is gelyk aan 1 akker is gelyk aan 1 akker is gelyk aan 1 acre is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 vierkant 'n myl is gelyk aan 1 oor 640 kwadraat myl is gelyk aan 1 oor 640 square miles 47 $46656\mathrm{cu in}=46656\mathrm{cu. in.}=46656{\mathrm{in}}^{3}={{46656}^{″}}^{3}=46656\mathrm{cubic inches}=27\mathrm{cu ft}=27\mathrm{cu. ft.}=27{\mathrm{ft}}^{3}={{27}^{\prime }}^{3}=27\mathrm{cubic feet}=1\mathrm{cu yd}=1\mathrm{cu. yd.}=1{\mathrm{yd}}^{3}=1\mathrm{cubic yard}$ 46656 cubic inches equals 46656 cubic inches equals 46656 cubic inches equals 46656 inches cubed equals 46656 cubic inches equals 27 cubic feet equals 27 cubic feet equals 27 cubic feet equals 27 feet cubed equals 27 cubic feet equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard equals 1 cubic yard 46656 kubieke duim is gelyk aan 46656 kubieke duim is gelyk aan 46656 kubiek duim is gelyk aan 46656 duim tot die mag drie is gelyk aan 46656 cubic inches is gelyk aan 27 kubieke voet is gelyk aan 27 kubieke voet is gelyk aan 27 kubiek voet is gelyk aan 27 voet tot die mag drie is gelyk aan 27 cubic feet is gelyk aan 1 kubieke jaart is gelyk aan 1 kubieke jaart is gelyk aan 1 kubiek jaart is gelyk aan 1 cubic yard 48 $1024\mathrm{fl dr}=1024\mathrm{fl. dr.}=1024\mathrm{fluid drams}=768\mathrm{tsp}=768\mathrm{tsp.}=768\mathrm{teaspoons}=256\mathrm{Tbsp}=256\mathrm{Tbsp.}=256\mathrm{tablespoons}=128\mathrm{fl oz}=128\mathrm{fl. oz.}=128\mathrm{fluid ounces}=16\mathrm{cp}=16\mathrm{cp.}=16\mathrm{cups}=8\mathrm{pt}=8\mathrm{pt.}=8\mathrm{pints}=4\mathrm{qt}=4\mathrm{qt.}=4\mathrm{quarts}=1\mathrm{gal}=1\mathrm{gal.}=1\mathrm{gallon}$ 1024 fluid drams equals 1024 fluid drams equals 1024 fluid drams equals 768 teaspoons equals 768 teaspoons equals 768 teaspoons equals 256 tablespoons equals 256 tablespoons equals 256 tablespoons equals 128 fluid ounces equals 128 fluid ounces equals 128 fluid ounces equals 16 cups equals 16 cups equals 16 cups equals 8 pints equals 8 pints equals 8 pints equals 4 quarts equals 4 quarts equals 4 quarts equals 1 gallon equals 1 gallon equals 1 gallon 1024 vloeibare dragmes is gelyk aan 1024 vloeibare dragmes is gelyk aan 1024 fluid drams is gelyk aan 768 teelepels is gelyk aan 768 teelepels is gelyk aan 768 teaspoons is gelyk aan 256 eetlepels is gelyk aan 256 eetlepels is gelyk aan 256 tablespoons is gelyk aan 128 vloeibare onse is gelyk aan 128 vloeibare onse is gelyk aan 128 fluid ounces is gelyk aan 16 koppies is gelyk aan 16 koppies is gelyk aan 16 cups is gelyk aan 8 pinte is gelyk aan 8 pinte is gelyk aan 8 pints is gelyk aan 4 kwarte is gelyk aan 4 kwarte is gelyk aan 4 quarts is gelyk aan 1 galon is gelyk aan 1 galon is gelyk aan 1 gallon 49 $256\mathrm{dr}=256\mathrm{dr.}=256\mathrm{drams}=16\mathrm{oz}=16\mathrm{oz.}=16\mathrm{ounces}=1\mathrm{#}=1\mathrm{lb}=1\mathrm{lb.}=1\mathrm{pounds}=100\mathrm{cwt}=100\mathrm{cwt.}=100\mathrm{hundredweights}=2000\mathrm{tons}$ 256 drams equals 256 drams equals 256 drams equals 16 ounces equals 16 ounces equals 16 ounces equals 1 # equals 1 pound equals 1 pound equals 1 pounds equals 100 hundredweights equals 100 hundredweights equals 100 hundredweights equals 2000 tons 256 dragmes is gelyk aan 256 dragmes is gelyk aan 256 drams is gelyk aan 16 onse is gelyk aan 16 onse is gelyk aan 16 ounces is gelyk aan 1 # is gelyk aan 1 pond is gelyk aan 1 pond is gelyk aan 1 pounds is gelyk aan 100 honderdgewigte is gelyk aan 100 honderdgewigte is gelyk aan 100 hundredweights is gelyk aan 2000 tons 50 $63360\mathrm{in}=63360\mathrm{in.}={63360}^{″}=63360\mathrm{inches}=5280\mathrm{ft}=5280\mathrm{ft.}={5280}^{\prime }=5280\mathrm{feet}=1760\mathrm{yd}=1760\mathrm{yd.}=1760\mathrm{yards}=1\mathrm{mi}=1\mathrm{mi.}=1\mathrm{mile}$ 63360 inches equals 63360 inches equals 63360 inches equals 63360 inches equals 5280 feet equals 5280 feet equals 5280 feet equals 5280 feet equals 1760 yards equals 1760 yards equals 1760 yards equals 1 mile equals 1 mile equals 1 mile 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 duim is gelyk aan 63360 inches is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 voet is gelyk aan 5280 feet is gelyk aan 1760 jaart is gelyk aan 1760 jaart is gelyk aan 1760 yards is gelyk aan 1 myl is gelyk aan 1 myl is gelyk aan 1 mile 51 $1\mathrm{J}=1\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram times square meters times seconds to the negative 2 power 1 joule is gelyk aan 1 kilogram dot kwadraat meter dot sekondes tot die negatiewe 2 mag 52 $1\mathrm{J}=1\mathrm{kg}{\mathrm{m}}^{2}{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag 53 $1\mathrm{J}=1·\mathrm{kg}·{\mathrm{m}}^{2}·{\mathrm{s}}^{-2}$ 1 joule equals 1 kilogram square meters seconds to the negative 2 power 1 joule is gelyk aan 1 kilogram kwadraat meter sekondes tot die negatiewe 2 mag 54 ${\mathrm{in}}^{3}$ cubic inches kubiek duim 55 $\frac{\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ kilometers kilograms seconds to the second power per joule kilometer kilogram kwadraat sekondes per joule 56 $\frac{3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 3 kilometers 1 kilogram seconds to the second power over joules 3 kilometer 1 kilogram kwadraat sekondes oor joule 57 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over joules 1 kilometer kilogram kwadraat sekondes oor joule 58 $\frac{1\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}}{5\mathrm{J}}$ 1 kilometer kilograms seconds to the second power over 5 joules 1 kilometer kilogram kwadraat sekondes oor 5 joule 59 $\mathrm{km}$ kilometers kilometer 60 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 3 kilometer kilogram kwadraat sekondes joule 61 $3\mathrm{km}\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers kilograms seconds to the second power joules 3 kilometer kilogram kwadraat sekondes joule 62 $3\mathrm{km}4\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 4 kilograms seconds to the second power joules 3 kilometer 4 kilogram kwadraat sekondes joule 63 $3\mathrm{km}1\mathrm{kg}{\mathrm{s}}^{2}\mathrm{J}$ 3 kilometers 1 kilogram seconds to the second power joules 3 kilometer 1 kilogram kwadraat sekondes joule 64 $1\mathrm{km}\mathrm{s}+2\mathrm{km}\mathrm{s}+0\mathrm{km}\mathrm{s}+a\mathrm{km}\mathrm{s}+$ 1 kilometer seconds plus 2 kilometers seconds plus 0 kilometers seconds plus a kilometers seconds plus 1 kilometer sekondes plus 2 kilometer sekondes plus 0 kilometer sekondes plus a kilometer sekondes plus 65 $1\mathrm{km}+2\mathrm{km}+0\mathrm{km}+a\mathrm{km}$ 1 kilometer plus 2 kilometers plus 0 kilometers plus a kilometers 1 kilometer plus 2 kilometer plus 0 kilometer plus a kilometer 66 $1\frac{2}{3}\mathrm{kg}$ 1 and two thirds kilograms 1 en twee derdes kilogram 67 $1\frac{2}{3}\mathrm{kg}\mathrm{km}$ 1 and two thirds kilograms kilometers 1 en twee derdes kilogram kilometer 68 $1\mathrm{km}2\mathrm{kg}\mathrm{km}$ 1 kilometer 2 kilograms kilometers 1 kilometer 2 kilogram kilometer 69 $1\mathrm{km}\mathrm{kg}\mathrm{s}+2\mathrm{km}\mathrm{kg}\mathrm{s}+0\mathrm{km}\mathrm{kg}\mathrm{s}+a\mathrm{km}\mathrm{kg}\mathrm{s}+$ 1 kilometer kilograms seconds plus 2 kilometers kilograms seconds plus 0 kilometers kilograms seconds plus a kilometers kilograms seconds plus 1 kilometer kilogram sekondes plus 2 kilometer kilogram sekondes plus 0 kilometer kilogram sekondes plus a kilometer kilogram sekondes plus 70 $1\mathrm{}$ 1 dollar 1 doller 71 $\mathrm{}1$ 1 dollars 1 dollers 72 $\mathrm{}$ dollars dollers 73 $\mathrm{}$ dollars dollers 74 $2\mathrm{}$ 2 dollars 2 dollers 75 $\mathrm{}2$ 2 dollars 2 dollers 76 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 1 doller plus 2 dollers plus 0 dollers plus a dollers 77 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollar plus 2 dollars plus 0 dollars plus a dollars 1 doller plus 2 dollers plus 0 dollers plus a dollers 78 $1\mathrm{€}+2\mathrm{€}+0\mathrm{€}+a\mathrm{€}$ 1 euro plus 2 euros plus 0 euros plus a euros 1 euro plus 2 euros plus 0 euros plus a euros 79 $1\mathrm{￡}+2\mathrm{￡}+0\mathrm{￡}+a\mathrm{￡}$ 1 pound plus 2 pounds plus 0 pounds plus a pounds 1 pond plus 2 ponde plus 0 ponde plus a ponde

## Afrikaans Clearspeak Units tests. Locale: af, Style: Currency_Position.

 0 $1\mathrm{}$ 1 dollars 1 dollers 1 $\mathrm{}1$ dollars 1 dollers 1 2 $\mathrm{}$ dollars dollers 3 $\mathrm{}$ dollars dollers 4 $2\mathrm{}$ 2 dollars 2 dollers 5 $\mathrm{}2$ dollars 2 dollers 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ 1 dollars plus 2 dollars plus 0 dollars plus a dollars 1 dollers plus 2 dollers plus 0 dollers plus a dollers 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ 1 dollars plus dollars 2 plus 0 dollars plus dollars a 1 dollers plus dollers 2 plus 0 dollers plus dollers a

## Afrikaans Clearspeak Units tests. Locale: af, Style: Currency_Prefix.

 0 $1\mathrm{}$ dollars 1 dollers 1 1 $\mathrm{}1$ dollars 1 dollers 1 2 $\mathrm{}$ dollars dollers 3 $\mathrm{}$ dollars dollers 4 $2\mathrm{}$ dollars 2 dollers 2 5 $\mathrm{}2$ dollars 2 dollers 2 6 $1\mathrm{}+2\mathrm{}+0\mathrm{}+a\mathrm{}$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a dollers 1 plus dollers 2 plus dollers 0 plus dollers a 7 $1\mathrm{}+\mathrm{}2+0\mathrm{}+\mathrm{}a$ dollars 1 plus dollars 2 plus dollars 0 plus dollars a dollers 1 plus dollers 2 plus dollers 0 plus dollers a

## Afrikaans Clearspeak Neutral Fences rule tests. Locale: af, Style: Verbose.

 0 $|a|$ the absolute value of a die absolute waarde van a 1 $｜a｜$ the absolute value of a die absolute waarde van a 2 $¦a¦$ the absolute value of a die absolute waarde van a 3 $\parallel a\parallel$ the metric of a die norm van a 4 $⦀a⦀$ the metric of a die norm van a 5 $⫴a⫴$ the metric of a die norm van a 6 $‖a‖$ the metric of a die norm van a 7 $｜a‖$ divides a double vertical bar gedeel deur a dubbel vertikale streep 8 $\parallel a‖$ parallel to a double vertical bar paralel aan a dubbel vertikale streep 9 $｜a¦$ divides a divides gedeel deur a gedeel deur 10 $⦀a‖$ triple vertical bar a double vertical bar trippel afstreep a dubbel vertikale streep 11 $a｜b$ a divides b a gedeel deur b 12 $a|b$ a divides b a gedeel deur b 13 $a¦b$ a divides b a gedeel deur b 14 $a‖b$ a double vertical bar b a dubbel vertikale streep b 15 $a\parallel b$ a parallel to b a paralel aan b 16 $a⦀b$ a triple vertical bar b a trippel afstreep b 17 $f｜g$ f divides g f gedeel deur g 18 $f|g$ f divides g f gedeel deur g 19 $f¦g$ f divides g f gedeel deur g 20 $f‖g$ f double vertical bar g f dubbel vertikale streep g 21 $f\parallel g$ f parallel to g f paralel aan g 22 $f⦀g$ f triple vertical bar g f trippel afstreep g 23 $\mathrm{sin}⦀g$ sine triple vertical bar g sinus trippel afstreep g 24 $f|a|$ f of, the absolute value of a f van, die absolute waarde van a 25 $g|a|$ g of, the absolute value of a g van, die absolute waarde van a 26 $h|a|$ h of, the absolute value of a h van, die absolute waarde van a 27 $r|a|$ r times, the absolute value of a r maal, die absolute waarde van a 28 $\mathrm{sin}|a|$ sine, the absolute value of a sinus, die absolute waarde van a 29 $\sum |a|$ the sum of, the absolute value of a die som van, die absolute waarde van a 30 $f‖a‖$ f of, the metric of a f van, die norm van a 31 $g‖a‖$ g of, the metric of a g van, die norm van a 32 $h‖a‖$ h of, the metric of a h van, die norm van a 33 $r‖a‖$ r times, the metric of a r maal, die norm van a 34 $\mathrm{sin}‖a‖$ sine, the metric of a sinus, die norm van a 35 $\sum ‖a‖$ the sum of, the metric of a die som van, die norm van a

## Afrikaans Clearspeak Neutral Fences rule tests. Locale: af, Style: AbsoluteValue_AbsEnd.

 0 $|a|$ the absolute value of a, end absolute value die absolute waarde van a, end absolute waarde van 1 $｜a｜$ the absolute value of a, end absolute value die absolute waarde van a, end absolute waarde van 2 $¦a¦$ the absolute value of a, end absolute value die absolute waarde van a, end absolute waarde van 3 $\parallel a\parallel$ the metric of a, end metric die norm van a, end metric 4 $⦀a⦀$ the metric of a, end metric die norm van a, end metric 5 $⫴a⫴$ the metric of a, end metric die norm van a, end metric 6 $‖a‖$ the metric of a, end metric die norm van a, end metric 7 $｜a‖$ divides a double vertical bar gedeel deur a dubbel vertikale streep 8 $\parallel a‖$ parallel to a double vertical bar paralel aan a dubbel vertikale streep 9 $｜a¦$ divides a divides gedeel deur a gedeel deur 10 $⦀a‖$ triple vertical bar a double vertical bar trippel afstreep a dubbel vertikale streep 11 $a｜b$ a divides b a gedeel deur b 12 $a|b$ a divides b a gedeel deur b 13 $a¦b$ a divides b a gedeel deur b 14 $a‖b$ a double vertical bar b a dubbel vertikale streep b 15 $a\parallel b$ a parallel to b a paralel aan b 16 $a⦀b$ a triple vertical bar b a trippel afstreep b 17 $f|a|$ f of, the absolute value of a, end absolute value f van, die absolute waarde van a, end absolute waarde van 18 $g|a|$ g of, the absolute value of a, end absolute value g van, die absolute waarde van a, end absolute waarde van 19 $h|a|$ h of, the absolute value of a, end absolute value h van, die absolute waarde van a, end absolute waarde van 20 $r|a|$ r times, the absolute value of a, end absolute value r maal, die absolute waarde van a, end absolute waarde van 21 $\mathrm{sin}|a|$ sine, the absolute value of a, end absolute value sinus, die absolute waarde van a, end absolute waarde van 22 $\sum |a|$ the sum of, the absolute value of a, end absolute value die som van, die absolute waarde van a, end absolute waarde van 23 $f‖a‖$ f of, the metric of a, end metric f van, die norm van a, end metric 24 $g‖a‖$ g of, the metric of a, end metric g van, die norm van a, end metric 25 $h‖a‖$ h of, the metric of a, end metric h van, die norm van a, end metric 26 $r‖a‖$ r times, the metric of a, end metric r maal, die norm van a, end metric 27 $\mathrm{sin}‖a‖$ sine, the metric of a, end metric sinus, die norm van a, end metric 28 $\sum ‖a‖$ the sum of, the metric of a, end metric die som van, die norm van a, end metric 29 $f｜g$ f divides g f gedeel deur g 30 $f|g$ f divides g f gedeel deur g 31 $f¦g$ f divides g f gedeel deur g 32 $f‖g$ f double vertical bar g f dubbel vertikale streep g 33 $f\parallel g$ f parallel to g f paralel aan g 34 $f⦀g$ f triple vertical bar g f trippel afstreep g 35 $\mathrm{sin}⦀g$ sine triple vertical bar g sinus trippel afstreep g